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Abstract—Who gets to use radio spectrum, and when, where,
and how? Many problems in traditional radio communication,
wireless networking, and cognitive radio are variants of this
question. Optimization decomposition based on Lagrangian re-
laxation of signal quality requirements provides a mathematical
framework for solving this type of combined problem. This
paper demonstrates the technique as a solution to optimal spatial
reuse time-division multiple access (STDMA) scheduling with
reconfigurable antennas. The joint beam steering and scheduling
(JBSS) problem offers both a challenging mathematical structure
and significant practical value.

We present algorithms for JBSS and describe an implemented
system based on these algorithms. We achieve up to 600% of the
throughput of TDMA with a mean of 234% in our experiments.
The decomposition approach leads to a working distributed
protocol which is provably equivalent to our original problem
statement while also producing optimal solutions in an amount
of time that is at worst linear in the size of the input. This is, to
the best of our knowledge, the first actually implemented wireless
scheduling system based on dual decomposition. We identify and
briefly address some of the challenges that arise in taking such
a system from theory to reality.

I. INTRODUCTION

Interference is the primary manifestation of spectrum

scarcity, and its management is the main technical challenge

in realizing efficient dynamic spectrum access (DSA). Most

work on spectrum allocation, whether in the context of DSA

or scheduling, takes transmitters’ and receivers’ properties

as given and seeks to work around those constraints. Our

view is that how users access the spectrum is as important

as who accesses it and when: The who and when questions

are about dividing up a fixed capacity efficiently and fairly,

but the “how” can actively increase that capacity. When users

can intelligently minimize the interference they impose on

each other – including on primary users – more value can

be extracted from a fixed amount of resources. This paper

presents a framework for jointly optimizing the how with the

who and when. We will focus on antenna configuration as a

physical configuration parameter because it can add tens of dB

isolation between links, and because it presents and especially

challenging mathematical structure.

A. Combined Spectrum Scheduling and System Configuration

We define spectrum scheduling as assigning users (who

can be understood as either transmitters or links) to discrete

slots of time in which they may generate radio signals. In

general, this is a many-to-many mapping. We define system
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Fig. 1: Problem decomposition model: The lower block shows

the decomposition by signal quality pricing.

configuration as stipulating the way in which users access

the spectrum in each time slot. Each user’s transmit power,

channel, modulation scheme, and antenna configuration are

examples of system configuration variables. For the purposes

of this paper, we assume that users are cooperative and

follow their assigned schedules and configurations. These

assignments can be thought of as upper bounds on how users

may affect each other.

The combined problem is interesting when the optimal (or

feasible) configuration depends on the schedule and vice-

versa, so that neither problem can be solved independently. In

this case, we can define a joint problem and then decompose it

into subproblems which are coupled by a Lagrange multiplier

which functions as a marginal value or price of signal quality

for each user. This is the model shown in Figure 1.

The intuition behind this approach is simple: A high signal

quality price for a given link is an indication to the scheduling

process that (given the schedule under consideration) it is dif-

ficult to satisfy that link’s signal to interference and noise ratio

(SINR) requirements, and it might be better to not schedule

that link in this time slot. The same high price indicates to the

configuration process that the link’s signal quality is limiting
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the overall utility, and it would be good to improve it. By

iteratively solving the scheduling and configuration problems,

updating the price each time, the system converges to a joint

solution.

B. Spatial-Reuse TDMA With Configurable Antennas

This paper demonstrates a novel approach to minimizing

interference and maximizing spatial reuse for competing spec-

trum users. These concerns are significant anytime interference

is a limiting factor, including packet radio networking, mobile

telephony, and radio repeaters. Here, we specifically consider

explicitly scheduled Medium Access Control (MAC) protocols

such as Time Division Multiple Access (TDMA). These MACs

enable optimizations for spatial reuse and avoid problems

that random-access carrier-sense protocols (e.g., CSMA/CA)

incur when deployed in large networks where hidden terminal

effects limit performance.

We present a joint optimization process for integrating

scheduling and beam steering to achieve greater spatial reuse

than is given by solving the two problems separately. Without

such coupling between the MAC scheduling and physical

antenna configuration processes, a “chicken-and-egg” problem

exists: If antenna decisions are made before scheduling, they

cannot be optimized for the communication that will actually

occur. If the scheduling decisions are made first, the scheduler

cannot know what the actual interference and communications

properties of the network will be.

Our results show significant gains by integrating scheduling

with antenna reconfiguration. An analysis of the performance

of our algorithm in simulation shows a mean speedup of 234%

with as much as 600% improvement in some scenarios. We

also show that simple techniques such as greedy approaches

to antenna steering and scheduling result in substantial inter-

ference between neighboring links.

Figure 2 illustrates the potential pitfalls of treating schedul-

ing and antenna configuration separately. The best perfor-

mance case (b) can occur only if the antenna patterns and

schedule are chosen jointly – the schedule is impossible with

a naïve antenna choice (a), and there’s no reason for the better

antenna patterns to be chosen unless that schedule is being

considered.

To understand the effects of this phenomenon on a real

network, we conducted an empirical study using a wide-area

phased array testbed of seven nodes [1]. Considering all fea-

sible two-link transmission sets (e.g. {A → B, C → D} with

each link using its independent best (greedy) antenna patterns,

we find significant inter-link interference. The distribution

of observed signal to interference ratios (SIRs) is shown in

fig. 3. The reference lines mark 10.5 and 26.5 dB, which

are theoretical signal to noise (SNR) thresholds1 to achieve

a bit error rate (BER) of 10−6 using two common modulation

schemes, BPSK and 64 QAM [2]. Pairwise interference is

1These SNR thresholds are roughly comparable with SIR numbers, if the
interfering signal is close to Gaussian noise and other sources of noise and
interference are negligible.

(a) Nodes have their beam pat-
tern main lobes pointed directly
at their communicating partner.

(b) Scheduling-aware antenna
configuration: Beam patterns
chosen to enable a denser
schedule.

Fig. 2: Example: Links B to C and D to A can be scheduled

concurrently, but not with greedy antenna configurations.
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Fig. 3: Interference between neighboring links when greedy

antenna patterns are used. Reference lines show theoretical

SNR values for 10−6 BER with BPSK (10.5 dB) and 64-QAM

(26.5 dB) modulation schemes.

sufficient to preclude BPSK and 64 QAM at this BER in 28%

and 74% of cases, respectively.

Based on the difficulties described, we observe that naïve

approaches have deficiencies which can be addressed with

a more complete, integrated solution. This motivates our

proposal here, which is capable of finding system-wide optimal

solutions in a reasonable amount of time.

In the following section, we discuss the background and

related work. In §III, we present our formulation along with a

series of decompositions which transform this problem into

a tractable form. Section IV evaluates this algorithm via

numerical experiments, showing that optimal solutions are

both achieved quickly and offer substantial speedup over (non-

spatial-reuse) TDMA schedules. In §V we discuss a testbed

proof-of-concept implementation of our approach, and finally

in §VI we summarize our contributions and conclude.

II. RELATED WORK

There are two main areas of closely-related work which

bear discussing: Optimization-based wireless scheduling, and

wireless networking with directional antennas. At the inter-

section of the two, there are several proposals which consider

antennas in the context of scheduling, but none which do so

with significant integration or optimality results.
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A. Optimization and Wireless Scheduling

There is a significant body of theoretical work in the area

of optimization and wireless scheduling, although ours is one

of the first to produce an implementation. We identify a few

salient examples here. The principle optimization foundations

were laid by Arikan’s formulation of ~f -feasibility and Toumpis

and Goldsmith’s analysis of capacity regions [3], [4]. The first

explicit treatment of utility maximization and its dual problems

in networking is Kelly’s work on rate control [5].

Björklund et al. introduced the first optimization formula-

tion of wireless scheduling of which we are aware [6]. The

authors present a linear column generation formulation. The

paper compares the complexity and efficacy of scheduling by

link and by node (transmitter), re-establishes NP-completeness

results for both problems, and compares an integer formulation

with its continuous relaxation. This paper’s formulation is the

starting point for the present paper.

Xiao et al. present the Simultaneous Routing and Resource

Allocation (SRRA) problem, which is a joint optimization

approach to routing and something similar to scheduling [7].

The authors make, and acknowledge, the assumption that link

capacities can be determined completely by sender-local deci-

sions. While this abstracted view does not correspond with any

real system, it enables a very clean and logical development

of techniques central to multi-layer optimization in networks.

This paper presents hierarchical dual decomposition using

subgradient solution methods, and the coupling of routing and

scheduling by per-node capacity prices.

The general principles of the preceding are further explored

in a series of papers by Chiang et al. under the moniker of

“layering as optimization decomposition” [8]–[10]. These ad-

dress wireless scheduling specifically, and develop the broader

notion of network layers as computational elements coupled

together to solve some global objective, whether by design

or by accident. Of particular import for scheduling is work

by Tan et al. which shows that many non-convex functions

of interest, such as interference-limited Shannon capacity, are

log-convex when transfered to the logarithmic domain, and

therefore admit equivalent convex formulations [11].

There has also been work on unscheduled spectrum al-

location, in which the goal is to identify a single set of

concurrently-operating users, rather than a time-dependent se-

quence of such sets [12], [13]. This problem is closely related

to finding concurrent link sets in Danzig-Wolfe decomposed

scheduling (§ III-D), and we expect that ideas developed in

either context will be useful in the other.

B. Scheduling with Antenna Considerations

The remaining related work can be divided into two groups:

those that do not consider antenna configuration directly and

those that do consider antenna configuration, but separately

from scheduling.

The first group of papers assume idealized high-level effects

of using directional antennas, rather than deal with the actual

RF gains of specific antenna configurations. Such approaches

are computationally much easier, but the assumptions are often

incorrect. Cain et al. assume that an arbitrarily narrow beam

width allows interference to be disregarded entirely, and pro-

pose scheduling then based on the (only) constraint that each

node may have at most one link active at a time [14]. Several

other papers replace the geometric circular interference region

model with a “pie wedge” version [15], [16]. Sundaresan et al.

consider real signal strength and interference, but assume that

a smart antenna can completely eliminate interference from

a given number of stations. Scheduling is then as with fixed

antennas, with the addition of choosing a set of interferers to

disregard [17]. This is conceptually the closest work to the

problem we are addressing, but its assumptions are typically

false: A K-element phased array antenna has K − 1 “degrees

of freedom,” but they are not arbitrary. The signal strength

can only be varied independently in K − 1 directions if they

correspond to mutually-orthogonal antenna vectors, which is

in general not the case [18, §10.1]. All of the preceding papers

are based on simplifying assumptions which do not hold well

in practice.

The second group of papers considers actual antenna and

radio effects, but with the configuration determined separately

from scheduling, as in the example in Fig. 2a on the preceding

page. A series of papers by Sánchez-Garache and Dyberg

investigates scheduling with the assumption that the stations

in every link beam-form toward each other [19], [20].

Recent work by Liu et al. considers partial integration of

antenna selection and scheduling, using a conflict graph model

based on pairwise interference [21], [22]. This simplification

leads to a significant loss of optimality, but enables sim-

ple and efficiently implementable protocols. Jorswieck et al.

present an analytical characterization of the potential benefit

of beamforming in a given group of concurrent users based

on their channel correlation properties, but do not propose any

scheduling process to take advantage of this [23].

III. MODEL AND ALGORITHMS

In this section, we describe a distributed and decomposed

mathematical solution to the integrated beam steering and

scheduling problem. We begin by presenting a formalization

of the objective and constraints. Following from this, we

present a series of decompositions to make the problem more

computationally tractable. Figure 4 on the next page outlines

these decompositions. The basic formulation is the Joint Beam

Steering and Scheduling Master Problem (JBSS-MP). This is

decomposed into a Restricted Master Problem (RMP) and the

Configuration and Link Activation Problem (CLAP). After

working through two intermediate forms, CLAP is decom-

posed into the Fixed-link Antenna Reconfiguration Program

(FARP), and the Relaxed Primal Fixed-antenna Link Activa-

tion Problem (RP-FLAP). FARP and RP-FLAP are separable,

and are split into distributed, per-node versions, the Single

Node Antenna Reconfiguration Problem (SNARP) and Single

Node Relaxed Primal FLAP (SNRP-FLAP). Lastly, we trans-

form SNRP-FLAP to reduce oscillations, producing what we

call the Single-node Dual Quadratic FLAP (SDQ-FLAP).
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Fig. 4: Problem Decompositions

First, some remarks on notation. Variables and constants are

vectors or matrices except where otherwise noted; vectors are

regarded as column vectors. Indexing is indicated with sub-

scripts, more than 2 subscripts indicating a multidimensional

array. An undecorated variable is a decision variable in the

problem at hand, while a bar (e.g. S̄) indicates an estimate,

especially one which is a constant in any given context. The

hat (e.g. Ŝ) indicates the estimates used in primal solution

extraction. The meanings of repeatedly-used symbols are given

below. Many of these symbols are logically indexed by the link

set l, but outside of the master problems JBSS-MP and RMP,

only one link set – the one currently being computed – is

considered at any given time, so the subscript l is omitted for

simplicity.

symbol interpretation

A The set of all links

N The set of all nodes

LA The set of all concurrently-feasible link sets

L
t
A The generated subset of LA at time t

xl Number of slots assigned to link set l ∈ LA

qij Demand (in slots) for link ij
Sij Activation of link ij (in current link set)

Mij Constant s.t. ineq. (16) holds when Sij = 0
Vi Node i is active (in current link set)

Pi Transmit power of node i
γ1 Desired SINR threshold

Nr Receiver noise level

Dij Directivity of node i in the direction of node j
Lb(i, j) Path loss from node i to node j
Gikp Gain for node i using pattern p, toward node k
Bjp Beam (antenna, pattern, . . .) p used at node j

TABLE I: Notation

A. Formulation

A direct statement of the integrated scheduling and antenna

configuration process is given in (JBSS-MP). The objective,

(1), is to minimize the time allocated across all link sets. For

[JSBS-MP]

min
xl

∑

l∈LA

xl (1)

s.t.
∑

l∈LA

Sijlxl ≥ qij ∀i,j (2)

∑

j:(i,j)∈A

Sijl +
∑

j:(j,i)∈A

Sjil ≤ 1 ∀i,l (3)

PilDijlDjil

Lb(i, j)Nr

Sijl +

γ1(1 +Mijl)(1− Sijl) ≥

γ1



1 +
∑

k∈N\{i,j}

PklDkjlDjkl

Lb(k, j)Nr

Vkl



































∀i,j,l

(4)

Sijl ≤ Vil ∀i,j,l (5)
∑

p∈P

Bjpl = 1 ∀j,l (6)

Dik =
∑

p∈P

GikpBipl ∀i,k,l (7)

xl ≥ 0 ∀l∈LA
(8)

Sijl, Bjpl ∈ {0, 1} (9)

each link set l in the universe of possible concurrent link sets

LA, xl is a variable indicating the amount of time for which l

is active. Note that at times we overload l to denote instead an

index referring to the link set. Constraint (2) specifies that the

schedule must “cover” the demand. Sijl is a boolean variable

indicating whether link ij is active in link set l, and qij is the

demand for link ij, measured in time. The constraint therefore

requires that the total time for which link sets containing ij

are activated is sufficient. Constraint (3) specifies that in any

given link set l, every node j may be active in at most one

link. This precludes duplex operation, as well as transmitting

to or receiving from multiple partners.

Constraint (4) specifies that minimum SINR requirements

are met, taking antenna configuration into account. The for-

mulation of this constraint is patterned after Björklund, and

can be somewhat unintuitive. See [24, Chapter 3, eq. (3.12),

and Appendix B].

Ignoring the second term, the constraint specifies that if the

link ij is used, the received signal strength must exceed the

combined interference and noise level at j by factor γ1. The

first term is a product of 0-1 variable Sijl, and the second

term is a product of (1 − Sijl); the second term ensures that

the constraint is satisfied when Sijl = 0: The constraint is

effectively a no-op when the link ij is not selected. For any

given ij, when Sijl = 1, the constraint reduces to inequality

(10) below. Considering a given link set l, the subscripts can
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be removed for clarity.

PiDijDji

Lb(i, j)Nr

Sij ≥ γ1



1 +
∑

k∈N\{i,j}

PkDkjDjk

Lb(k, j)Nr

Vk



 (10)

The left-hand side gives the received SNR in linear units:

Pi is node i’s transmit power. Dij and Dji are the directional

gains of node i and node j toward each other. Lb(i, j) is the

path loss between nodes i and j, and Nr is the receiver noise

figure. While we use a single Nr for all nodes, having different

per-node noise figures does not change the complexity of the

solution. The right-hand side is the sum of the contribution

above the noise floor of received interfering signals plus 1.

The 0-1 variable Vk specifies that node k is (or may be)

transmitting in the given time slot.

Constraint (5) couples the decision variables Sijl and Vil so

that if any link ij is selected, the variable Vil reflects that i is

transmitting. The V variable is used in (4) to identify sources

of interference. The 0-1 variable Bjpl indicates whether node

j uses beam pattern p in link set l. Constraint (6) specifies

that each node must select gain which correspond to a convex

combination of its beam patterns. When Bjpl ∈ {0, 1}, the

gain must correspond to exactly one pattern. Constraint (7)

couples the otherwise free directional gain variables Dikl to

the choice of antenna beam Bipl. Constraints (8) and (9)

specify positivity and 0-1 requirements for variables.

B. Extensions

The joint beam steering and scheduling problem generalizes

several other joint scheduling problems. In particular, transmit

power and receiver sensitivity control are achieved by relaxing

constraint (6) to allow fractional antenna gain as below, which

is mathematically equivalent:
∑

p∈P

Bjpl ≤ 1 ∀j,l

Additionally, selection from a finite set of modulation

schemes is achieved by considering multiple “logical” links

for each physical link, with a different γ1,r for each rate r

and adding a rate constant Rr to constraint (2) as follows:
∑

l∈LA

SijlrRrxl ≥ qij ∀i,j

Neither extension is considered further in this paper, but

both are consistent with the decompositions presented. Adding

rate selection is computationally similar to increasing the

number of links, while adding power control does not increase

the complexity at all.

C. Computational Complexity

The master problem (JBSS-MP) is complete, but a direct

solution is computationally intractable. First, the program

is mixed-integer cubic, meaning that the objective or con-

straints involve polynomials of degree 3 and a mixture of

continuous and integer variables. There are a number of

efficient algorithms for solving linear and quadratic programs,

but cubic programs are as difficult as arbitrary non-linear

programs. There is no obvious way to reformulate the cubic

terms (DijlDjilSijl and DkjlDjklVkl) away, as they are the

fundamental determinants of SINR and are all real decision

variables. The size of the problem is also vast. The subscript

l indexes the set of all possible sets of links LA, having

dimension 2m for m links. Several of the variables are indexed

over LA×N ×N , meaning there are Θ(n22m) variables and

similarly many constraints.

D. Decompositions

The first transformation we apply is Danzig-Wolfe decom-

position. This allows the solution technique of delayed column

generation, or implicit enumeration (a term we prefer). This

decomposition is used in many previous scheduling works,

including [6], [7], [25], [26]. The objective function of JBSS-

MP (equation (1) on the preceding page) is quite simple;

the complexity lies in defining the region of feasible values.

Any set of feasible points defines a convex hull which is

a subset of the feasible region. Therefore, given any set of

feasible points, the original problem can be replaced with a

restricted master problem (RMP), in which the only constraint

is that the solution must lie within the polytope defined by

those points. For a simple objective function and any modest

number of such points, the RMP is a computationally simple

conservative approximation of the full master problem. The

quality of the approximation depends on the how closely this

polytope approximates the true feasible region in the area

of the master problem’s optimal solution. The scheme of

implicit enumeration proceeds by iteratively solving the RMP

and a sub-problem which searches for additional objective-

improving feasible points to extend the polytope. If no such

points exist, then the approximating polytope matches the true

constraint region at the optimal point and therefore the solution

to the RMP is the optimal solution to the master problem.

Applying this decomposition to JBSS-MP produces the

restricted master problem (RMP) and a subproblem which

we designate the Configuration and Link Activation Problem

(CLAP), shown on the next page. The time allocated to each

feasible point l is denoted xl, and the activation level of each

link i, j in each l – an output of the subproblem, not a decision

variable here – is denoted S̄ijl. The set of feasible points

defining the RMP’s approximation polytope in iteration t is

Lt
A.

[RMP]

min
xl

∑

l∈Lt
A

xl (11)

s.t.
∑

l∈Lt
A

S̄ijlxl ≥ qij ∀ij (12)

xl ≥ 0 ∀l∈Lt
A

(13)

The process of solving RMP produces not only a primal so-

lution X∗
RMPt

but also dual costs for the constraints (12), β̄ij .

These are inputs to the subproblem CLAP, which produces a
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set of concurrently feasible links indicated by S and associated

antenna gains and configurations D and B. In the context of

Figure 1, CLAP is incremental scheduling and configuration

and RMP is the scheduling master.

[CLAP]

max
S

β̄TS (14)

s.t.
∑

j:(i,j)∈A

Sij +
∑

j:(j,i)∈A

Sji ≤ 1 ∀i (15)

PiDijDji

Lb(i, j)Nr

Sij +

γ1(1 +Mij)(1− Sij) ≥

γ1



1 +
∑

k∈N\{i,j}

PkDkjDjk

Lb(k, j)Nr

Vk



































∀i,j (16)

Sij ≤ Vi ∀i (17)

Dik =
∑

p∈P

GikpBip ∀i,k (18)

∑

p∈P

Bjp = 1 ∀j (19)

Sij , Bjp ∈ {0, 1} (20)

The problem RMP is trivial, but CLAP retains most of

the original complexity of JBSS-MP. Crucially, however, it

is no longer dimensioned over the set of all possible sets of

links: For n nodes, the number of variables and the number

of constraints are both Θ(n2). The primary computational

difficulty in CLAP comes from constraint (16) which is

still order 3 and mixed-integer. Let us define vector-valued

convenience function ds(·), entry ij of which is given by:

ds(S,D, V )ij = −

(

PiDijDji

Lb(i, j)Nr

Sij+

γ1(1 +Mij)(1− Sij)−

γ1
(

1 +
∑

k∈N\{i,j}

PkDkjDkj

Lb(k, j)Nr

Vk

)

)

(21)

Note that constraint (16) is then ds(S,D, V ) ≤ 0. Let the

Lagrangian function with regard to (14) and (16) be:

L(S, λ) = β̄TS − λT ds(S,D, V ) (22)

This gives a dual function

φ(λ) = max
S,D,V

L(S,D, V, λ) (23)

The corresponding Lagrangian dual problem is CLAP-dual-

1. The resulting Lagrangian relaxed primal problem (RPP) of

CLAP is given below, where λ̄ denotes an estimate of the

optimal multipliers λ∗.

max
S,D,V

β̄TS + λ̄T ds(S,D, V )

s.t. constraints (15)− (19)

except (16).

(24)

[CLAP-dual-11]

min
λ

φ(λ)

s.t.
∑

j:(i,j)∈A

Sij +
∑

j:(j,i)∈A

Sji ≤ 1 ∀i

Sij ≤ Vi ∀i

Dik =
∑

p∈P

GikpBip ∀i,k

∑

p∈P

Bjp = 1 ∀j

Sij , Bjp ∈ {0, 1} ∀i, j, p

This RPP is block-structured and separable into two sub-

problems coupled by the Lagrange multipliers λ. These prob-

lems correspond to the Incremental Scheduling and Config-

uration tasks in Figure1. We label these the Fixed-antenna

Link Activation Problem (FLAP) and the Fixed-link Antenna

Reconfiguration Problem (FARP) respectively. FLAP takes

estimated Lagrange multipliers and antenna gains λ̄, D̄ as

parameters and computes link activations S. Conversely, FARP

takes λ̄ and estimated link activations S̄ as parameters and

computes antenna gains D:

[FLAP]

max
S,V



































β̄TS −
∑

ij

λ̄ij

(

PiD̄ijD̄ji

Lb(i, j)Nr

Sij+

γ1(1 +Mij)(1− Sij) −

γ1

(

1 +
∑

k∈N\{i,j}

PkD̄kjD̄kj

Lb(k, j)Nr

Vk

))

s.t.
∑

j:(i,j)∈A

Sij +
∑

j:(j,i)∈A

Sij ≤ 1 ∀i

Sij ≤ Vi ∀i,j
Sij ∈ 0, 1 ∀i, j

This problem has the integrality property, and so the con-

straint Sij ∈ 0, 1 ∀i, j can be dropped.

Proposition 3.1: The continuous relaxation of FLAP is

equivalent to FLAP with integer S.

Proof: The constraint matrix of continuous FLAP is

totally unimodular by Ghouila-Houri’s Theorem. Therefore

every extreme point of the feasible polytope is in Z
n. The

function to be maximized is concave, implying that no max-

imum occurs within the feasible polytope, and therefore that

the constrained optimum occurs at an extreme point. Therefore

the integer optimum and continuous optimum occur at the

same point. The inverse of the constraint matrix is also totally

unimodular by Cramer’s Rule, and so the same argument holds

for the dual problem.
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[FARP]

max
D,B































β̄T S̄ −
∑

ij

λ̄ij

(

PiDijDji

Lb(i, j)Nr

S̄ij+

γ1(1 +Mij)(1− S̄ij) −

γ1

(

1 +
∑

k∈N\{i,j}

PkDkjDkj

Lb(k, j)Nr

V̄k

))

s.t. Dik −
∑

p∈P

GikpBip = 0 ∀i,k

∑

p∈P

Bip = 1 ∀i

Note that β̄T S̄ is a constant and is dropped for simplicity in

subsequent formulations. The constraints are easily separable

by index i. The objective function is also separable, but it

is slightly less obvious. To identify the separability, we will

introduce the following notation. Let x denote the vector of

all antenna gains D. Now let i partition x as: xi = ∪k 6=iDik.

gi(x) =







































∑

j

(

1

2
λ̄ijS̄ij

Pi

Lb(i, j)Nr

DijD̄ji

)

+
k

|N |

if i is a transmitter
∑

j

(

1

2
λ̄jiS̄ji

Pj

Lb(j, i)Nr

D̄jiDij

)

+
k

|N |

if i is a receiver

hi(x) =







































∑

j

(

∑

k,l∈N\{i,j}

(

1

2
γ1S̄ij λ̄kl

Pi

Lb(i, l)Nr

DilD̄li

))

if i is a transmitter
∑

j

(

∑

k,l∈N\{i,j}

(

1

2
γ1S̄jiλ̄ji

Pk

Lb(k, i)Nr

D̄kiDik

))

if i is a receiver

fi(x) = gi(xi)− hi(x)

f(x) =
∑

i

fi(x) given
∑

j

S̄ij ≤ Vi ∀i

Now, f(x) is a re-arrangement of the inverse of the FARP

objective, and is clearly separable by index i. Using this

separation, we define an instance of the Single Node Antenna

Reconfiguration Problem (SNARP) for every node in the

network.

[SNARPi]

max
D,B

1− fi(D) (25a)

s.t. Dik −
∑

p∈P

GikpBip = 0 ∀k (25b)

∑

p∈P

Bip = 1 (25c)

Bip ≤ 1 ∀p∈P (25d)

Bip ≥ 0 ∀p∈P (25e)

Proposition 3.2: SNARPi with continuous variables has an

optimal solution equal to that with boolean Bip.

Proof: SNARPi is a linear program in D,B, but can be

re-written purely in B by substituting
∑

p∈P

GikpBip for Dik in

the objective function. So written, it is a linear program with

|P | variables and 2|P | + 1 constraints. By the fundamental

theorem of linear programming [27, Theorem 3.4] ∃ a basic

solution in which |P | constraints are satisfied with equality.

Constraint (25c) must be one of them. This forces |P |−1 out

of (25d), (25e) to be satisfied with equality, which means that

|P |−1 of the variables must be either 0 or 1. Those variables

must then sum to either 0 or 1, based on (25c). Those options

force the remaining variable to be 1 or 0, respectively, in order

to satisfy (25c).

In the interest of scalability, it would be desirable to

similarly separate FLAP. Unfortunately the duplex constraint

prevents this, and is not easily massaged away algebraically.

To address this, we extend the Lagrangian relaxation of CLAP

to the constraint
∑

j:(i,j)∈A

Sij +
∑

j:(j,i)∈A

Sji ≤ 1 ∀i. Paralleling

equation (21) on the preceding page, let dd(S) be the function

having the i-th element given be equation (26):

dd(S)i =
∑

j:(i,j)∈A

Sij +
∑

j:(j,i)∈A

Sji − 1 (26)

Let d′s(S, V ) be ds(S,D, V ) where the antenna gain vari-

ables D are replaced with fixed estimates D̄, where element

ij is given by:

d′s(S, V )ij = −

(

PiD̄ijD̄ji

Lb(i, j)Nr

Sij+

γ1(1 +Mij)(1− Sij)−

γ1
(

1 +
∑

k∈N\{i,j}

PkD̄kjD̄jk

Lb(k, j)Nr

Vk

)

)

(27)

Let us define a new Lagrangian function L′(·) as follows:

L′(S,D, V, λ, µ) =

β̄TS − λT ds(S,D, V )− µT dd(S) (28)

This gives a new dual function φ′(λ, µ) below and corre-

sponding problem dual problem CLAP-dual-2:

φ′(λ, µ) = max
S,D,V

L′(S,D, V, λ, µ)

This produces a new relaxed primal version of FLAP, RP-

FLAP. FARP remains unchanged.

[RP-FLAP]

max
S,V

β̄TS + λ̄T d′s(S, V )− µ̄T dd(S)

s.t. Sij ≤ Vi ∀ij

(30)
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[CLAP-dual-2]

min
λ,µ

φ′(λ, µ)

s.t. Sij ≤ Vi ∀i

Dik =
∑

p∈P

GikpBip ∀i,k

∑

p∈P

Bjp = 1 ∀j

(29)

RP-FLAP is separable along the index i. We group the link

ij with node i, defining d′d in equation (31):

d′d(S)i =
∑

j:(i,j)∈A

Sij +
∑

j:(j,i)∈A

S̄ji − 1 (31)

Using the preceding definition, we define the following:

β̄w = {β̄ij |i = w}

λ̄w = {λ̄ij |i = w}

µ̄w = {µ̄i|i = w}

d′dw (S) = {d′d(S)i|i = w}

Sw = {Sij |i = w}

d′sw(Sw, V ) = {d′sw(S, V )ij |i = w}

The partitioned form of RP-FLAP is the Single Node

Relaxed Primal FLAP (SNRP-FLAPw) for each index w:

[SNRP-FLAPw]

max
S

β̄T
wSw + λ̄T

wd
′s
w(Sw, Vw)− µ̄T

wd
d
w(Sw) (32a)

s.t. Swj ≤ Vw ∀j (32b)

The preceding series of decompositions replace the relaxed

primal problem (RPP) with 2N easy subproblems which can

be solved in parallel. Each instance of SNARPi is a linear

program with |P | variables and 1 general constraint. By

Proposition (3.2), it can be solved by simply enumerating the

objective value for each p ∈ P , of which there are a small

constant number, and choosing the pattern with the highest

value. Therefore the overhead of a general-purpose solver

can be avoided. Each instance of SNRP-FLAP is a linear

problem with O(N) variables and constraints, although it will

be further re-formulated.

E. Economic Interpretation

This formulation can be interpreted in the following way:

In the coupling between the restricted master problem (RMP)

and CLAP, the dual values β̄ij represent the estimated value in

terms of improvement to the overall schedule of accommodat-

ing more traffic on link ij. In the coupling between Lagrangian

subproblems, λ̄ij is the signal quality price: It represents the

value of improving the SINR on link ij, and duplex price µ̄i

represents the value of decreasing the usage of node i.

In SNRP-FLAP, each node activates links to maximize its

utility, where β̄ ≥ 0 is the reward for activating each link,

λ̄ ≥ 0 is the penalty for any SINR reduction on each link, and

µ̄ ≥ 0 is the penalty for using each node. In SNARP, each

node chooses antenna gains to maximize a different utility,

defined solely in terms of λ̄. When all the constants have their

values substituted in, the objective function of SNARPi is of

the form in equation (33), where the actual value of constant

kij is determined by λ̄, node j’s antenna configuration, and

RF parameters Lb, P , and Nr.

max
Dij

∑

j 6=i

Dijkij (33)

kij











≥ 0 if ij or ji is an active link

≤ 0 if ij or ji is an “interference link”

= 0 otherwise

F. Lagrange Multiplier Updates

The combined problems SNRP-FLAPi and SNARPi for

all nodes i implement the relaxed primal problem. Solving

proceeds by iteratively solving the RPP and updating the

Lagrange multipliers λ and µ so that they converge to an

optimal solution of the dual problem. We use a subgradient

method because it lends itself to distributed implementation

and because it scales well with the problem size. At time t,

let st denote the degree of constraint violation, αt the step size,

and let [·]+ denote projection onto the nonnegative orthant. The

subscripts λ and µ are used to distinguish the values pertaining

to each set of Lagrange multipliers.

stλ = ds(St, Dt, V t)

stµ = dd(St)

λ̄t+1 ←
[

λ̄t + αt
λs

t
λ

]

+

µ̄t+1 ←
[

µ̄t + αt
µs

t
µ

]

+

We define step size rule αt =
a

(t+ b)2
, a > 0, b ≥ 0. The

a and b are tunable parameters, and are not related to Guan’s

a and b in SDQ-FLAP and [28].

1) Convergence Properties: The subgradient method de-

scribed above will produce optimal values of the Lagrange

multipliers for CLAP-dual-2.

Proposition 3.3: The sequences {λ̄t} and {µ̄t} converge to

λ∗ ∈ λ∗ and µ∗ ∈ µ∗, where (λ∗,µ∗) are the optimal sets

of CLAP-dual-2.

Proof: Let X refer to the set of all decision variables,

x refer to a vector value in X , and x0 refer to some

specific value of x, not a scalar component of x. Let Gs

be any subgradient of d′s and Gd be any subgradient of

d′d. Then λGs(x0) + µGd(x0) is a subgradient of −β̄TS +
λT ds(S,D, V ) + µT dd(S), by Shor’s Thm 15 of [29]. This

equals equation (28) on the preceding page. ∴ St
λ + St

µ is a

subgradient of (28). The sum over all i of the objectives and

constraints of SNRP-FLAPi and SNARPi equal the objectives

and constraints of CLAP-dual-2. Assume that the Slater condi-

tion holds, otherwise the problem and JBSS-MP are infeasible.
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∫

a

(t+ b)n
d(t) =

a(t+ b)1−n

1− n
, n > 1, which diverges

as t → ∞. ∴

∞
∑

t=0

αt = +∞. lim
t→∞

αt = 0 for n, a > 0.

Therefore, {x} converges to optimal x∗ by [29, Thm 31].

It does not follow that the sequence of primal values

produced will converge to optimal S∗, D∗ even though the

problems exhibit strong duality. To address this, we define the

following sequence:

Ŝt = (1− αt)Ŝt−1 + αtSt (34)

Proposition 3.4: {Ŝt} converges to S∗, and the analogous

{D̂t} converges to D∗

Proof: We appeal to a result by Larsson et al. [30].

{St} is generated by a dual subgradient process satisfying his

criteria (9)-(11). {Ŝt} is an ergodic sequence satisfying (7),

(13). It follows from [30, Theorem 1] that {St} converges to

the solution set. The same applies to {D̂t}.
Our formulation exhibits a well-known issue with subgra-

dient methods: small changes in the Lagrange multipliers

produce large changes in primal solutions, causing oscillation

around the ideal search trajectory. This can slow the solu-

tion process. The linear objective function and previously-

mentioned integrality property contribute to this behavior

in FLAP and its derived problems. Additionally, when the

relevant SINR prices λ are 0 and the β̄ values are the same,

links which share a node exhibit the homogeneous subproblem

property where any given dual price µ will result in the same

primal outcome for all links. This issue arises in the context of

the hydrothermal unit commitment problem, and is commonly

addressed using surrogate subgradient methods. To simplify

decentralized implementation, however, we instead use a non-

linear approximation method of the form presented in [28].

This is conceptually very similar to an augmented Lagrangian,

but the additional quadratic parameter is computed locally for

each subproblem, maintaining the separable structure of the

original program. Based on this transformation, we introduce

the Single-node Dual Quadratic FLAP, or SDQ-FLAP, where

aij and bij are defined as in [28].

[SDQ-FLAPi]

max
S

∑

j:ij∈A

−aijSij
2 + (bij − λ̄ijSij)−

µ̄i + µ̄j

2
Sij

(35a)

s.t. Sij ≤ Vi ∀j
(35b)

Proposition 3.5: Any stable solution to SDQ-FLAPi is also

a solution to SNRP-FLAPi.

Proof: The constraints of SDQ-FLAPi are identical to

those of FLAPi. At any point x0, the nonlinear approximation

f ′ generated at x0 is parallel to f [28]. For both SDQ-

FLAP and SNRP-FLAP, the constraints are all differentiable

and convex, and the objective is convex (when stated as

minimization). Therefore the Karush-Kuhn-Tucker conditions

are sufficient for global optimality.

Let x∗ be an optimal solution of SDQ-FLAPi as constructed

at x0. The KKT conditions therefore hold. Assume x∗ is

stable, therefore x∗ = x0. Suppose that x0 is not an optimal

solution of SNRP-FLAPi. The KKT conditions other than

stationarity are the same in both cases, so they must hold for

SNRP-FLAPi. Therefore the stationarity condition must hold

for SDQ-FLAPi but not for SNRP-FLAPi. That requires, for

the same constraints, that ∇f ′(x∗) 6= ∇f(x∗), ⊥.

The preceding formulation significantly reduces oscilla-

tion relative to FLAP or its decomposed analogue, SNRP-

FLAP. The constraint (35b) can be ignored: The variable Vi

does not appear in the objective function and is otherwise

free, so the problem can be solved for S and Vi chosen

to be max(Sij). SDQ-FLAPi is therefore an unconstrained

(or bound-constrained) quadratic program with at most 2N
variables.

G. Partial Pricing

Recall that the objective of the column generation subprob-

lem is to find improving feasible points for inclusion in the

restricted master problem. The optimality of the overall result

does not require that the subproblem finds the most improving

point, only that it finds an improving point if one exists. We

exploit this by using “partial pricing” and returning the first

improving primal feasible result (Ŝt, D̂t) – which may or may

not be the best possible – without waiting for the subgradient

process to converge [31]. It is only necessary to allow the

subproblem to fully converge to prove that there is no as-yet-

undiscovered feasible improving point.

Every solution to an iteration of the restricted master

problem is a valid schedule. Each such schedule can be put

into place in the network immediately if it is superior to the

current schedule, regardless of whether or not it is the final,

best schedule. Consequently, terminating the subproblem early

and re-solving the RMP yields a useful result sooner than

solving the subproblem to optimality, even though it may or

may not improve the overall running time.

H. Distributed Consensus

The preceding sections decompose the original problem

into a form where 2N small problems are solved in parallel

for each subgradient update iteration. Going from a parallel

algorithm to a distributed one requires some consideration of

the communication processes. We make use of a very simple

and robust model due to [32]: Every node maintains its own

version of every variable, and nodes announce their variable

values to other nodes occasionally. A node may actively

compute locally-generated values for some, all, or no vari-

ables. Upon computing a new value or receiving other nodes’

variable values, a node updates its own values according to a

weighted averaging scheme. Under surprisingly light require-

ments on the weights and communication frequencies, it is

shown that this scheme has the same convergence properties as

its centralized counterpart. The results in [32] are only shown

for objective functions which are continuously differentiable

and Lipschitz, while the Lagrangian dual function is generally
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Iterations to Specified Fraction of Optimality
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(a) Distribution of number of (minor) iterations necessary in simulations to first
reach and optimal solution.

Acheived Speedup in Numerical Simulations
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(b) Empirical cumulative distribution of achieved speedup (ratio of optimal to
TDMA performance) across all simulations.

Fig. 5: Performance in Simulations

non-differentiable. Similar results are proven for the non-

differentiable case in [33].

IV. NUMERICAL EXPERIMENTS

This section considers the performance of the optimiza-

tion process taken in isolation. These experiments emulate

a distributed algorithm in that each node’s computations are

performed separately. Experiments were conducted by running

the algorithm over a large number of scenarios constructed

with varying initial values. In total, 1396 experiments were

run. The following major parameters were varied: Number of

nodes (between 0 and 48), the number of links (between 1
2

and 3 links per node), and the size of the simulated region

(between 1 and 16 square km). For each set of parameters,

nodes were randomly placed within the simulated area with

uniform probabilities, and pairwise path losses were estimated

using the Green-Obaidat model [34]. All possible links were

identified based on a hypothetical transmission power of 14.7

dBm, a required signal strength of -80 dBm, and the best-

case antenna gains given a measured phased array antenna

beam pattern. The requested number of links were chosen

randomly from the pool of possible links; if enough possible

links did not exist then a new layout was generated. The results

presented here are aggregates across all of these scenarios—a

full factorial analysis is planned for future empirical studies

of these algorithms and associated STDMA MAC.

A. Running time

A well-known limitation of subgradient methods for up-

dating Lagrange multipliers is that they are very slow to

reach a provably converged state. This means in practice that

such algorithms may find optimal values relatively quickly,

but then require a longer period to verify that no better

values exist. As alluded to in section III-G on the previous

page, termination may not be the best criterion for an on-

line system. It is expected that schedule optimization will

be a continuous process, converging and diverging as system

parameters change. Consequently, we find it useful to examine

the time required to find optimal and near-optimal solutions

as well as the time to termination. In our experiments, we find

that by either measure, execution time is at worst linear in the

size of the input.

To quantify the behavior, see Figure 5a which plots the

distribution of the number of iterations required to first reach

the optimal solution across all of our simulation runs. We can

see that in more than 90% of the cases, the optimal solution

is found within 500 iterations (the mean is 150 iterations

and 91.83% are solved to optimality within 500), yet some

scenarios may require as many as 1500 iterations to settle on

the optimal solution. On average, we are able to get within

10% of optimal within 146 iterations and within 20% of

optimal within only 85 iterations.

B. Schedule Efficiency

In addition to convergence properties, our numerical ex-

periments provide a window into the ability of the algorithm

to produce efficient (high-reuse) schedules across a large

number of randomly generated scenarios. Figure 5b plots a

speedup metric which is the ratio of the time required by a

TDMA MAC to service a given demand relative to the time

required by our optimized system. This is either an increase in

throughput, given a fixed amount of time, or an increase in free

spectrum time, given a fixed workload. In our experiments, we

see speedup values ranging from 1 (no speedup) to 6 with an

average speedup of 2.34 across all scenarios (σ = 1.31).

V. DEPLOYED SYSTEM

Thus far, this paper has described and evaluated our

mathematical design; this subsection addresses its concrete

implementation. The system we present here operates in a

fully distributed, asynchronous manner. Nodes maintain and

exchange variables as described in § III-H.

In addition to the subproblem solver processes, there is a

separate process for the early termination check and restricted

master problem (RMP). When this process detects that its

current estimates (S̄t, D̄t) constitute a primal feasible solution

with negative reduced cost, a corresponding new column is

added to the RMP, which is re-solved. The resulting new

schedule, updated dual prices β̄, and step size reference time

are sent to all nodes by a flooding protocol.

Fig. 6 on the following page shows the execution of the

algorithm on a wide-area phased array antenna testbed, as

observed by a single node (C). In this scenario, node B is
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State Evolution at Node C
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Fig. 6: Trace of algorithm scheduling links B→ A and C→ D concurrently, as seen locally at node C. The top strip shows λ̄,

middle strip shows Ŝ, and the bottom strip shows the combined gain D̂ijD̂ji. Note that B→ D and C→ A are interference

if both data links are active. The aligned x axis is time in seconds.

sending traffic (a stream of UDP packets with 1024 byte

payloads) to node A while node C sends a similar volley

to node D. With naïve beam-steering, these links are bad

neighbors—node B will cause substantial interference at node

C (62.5 dBm on average). Hence, these links can be activated

simultaneously, but only carefully.

The top strip of this figure shows the evolution of the SINR

Lagrange multiplier estimates λ̄ – the signal quality prices, the

second strip shows the consensus estimated link activations Ŝ,

and the third strip shows the combined antenna gains for the

signals and interference. Times of interest are marked with a

vertical bar and labelled (1, 2, . . .) on all strips. No change to

actual system state occurs until a new execution of the RMP;

the link activation and antenna configurations referred to are

variable values. Qualitatively, the execution of the algorithm

can be understood in the following stages:

Prior to time 1, node C’s estimate λ̄CD is 0 and does not

appear on the log-scale. This drives the link activation ŜCD

toward 1, while the SNARP objective is undefined and the

resulting gains are low.

At time 1, high activation and low gain causes the SINR

constraint for link C→ D to be violated. The price λ̄CD takes

a large step to > 10−20. This increase drives ŜCD back toward

0, and causes D̂CDD̂DC to start increasing. The price λ̄CD

decreases as the low activation and higher gain stay within

the constraints.

At time 2, the combination of low λCD and higher gain

allows ŜCD to increase to near 1. At time 3, ŜCD gets close

enough to 1 to violate the SINR constraint again and drive up

λ̄CD The increase in λ̄CD relative to λ̄BA drives the antennas to

favor D̂CDD̂DC. Note that this antenna configuration at node C

has high gain toward A, raising the unwanted gain D̂CAD̂AC.

Between times 3 and 4, λ̄CD and λ̄BA trend down, but

changes in their relative magnitude cause the antenna state

to switch back and forth. Immediately before time 4, ŜBA

increases almost invisibly. Recall that node C is not computing

SBA, so a change in ŜBA reflects the incorporation of a value

broadcast by node B. This change is sufficient to cause an

SINR constraint violation, driving λ̄BA up at time 4.

Note two changes with regard to the gains: First D̂ABD̂BA

increases dramatically, reflecting a change in antenna config-

uration by node B. Second, the change in λ̄BA causes node

C to change its antenna configuration to diminish D̄CA, at

the cost of also reducing D̄CD. This new configuration can

accommodate both links, and ŜBA tends toward 1 as node

C receives updates from other nodes. At this point the RMP

can schedule the two links concurrently with the configuration

given. Note that λ̄ continues to vary but this variation does not

effect the primal estimates.

The prototype implementation contains significant ineffi-

ciencies. Every subproblem solution involves writing several

files, synchronizing processes, and running a stand-alone NLP

solver. Additionally, the STDMA driver schedules very large

time slots, so freshly computed values wait as much as

a second to be sent. The post-decomposition subproblems

are simple enough for the results to be easily calculated
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directly without the machinery of a general-purpose solver.

In preliminary experiments, this accelerates the computation

process by a factor of 105. We expect that the communication

process can similarly be improved, though not by as dramatic

a factor.

VI. CONCLUSION

This paper presents a price-coupled decomposition structure

for jointly optimizing which users access spectrum when and

how. Using this structure, we solve the joint beam steering and

scheduling problem. Optimal spatial reuse TDMA scheduling

is known to be NP-hard, and the addition of antenna config-

uration increases the state space exponentially in the number

of nodes. In solving this problem, we provide the first imple-

mentation of wireless scheduling based on dual decomposition

of signal constraints. These algorithms are computationally

efficient—they find the optimal solutions within hundreds of

iterations, each of which requires only minimal computation.

Despite the NP-hard nature of the underlying problem, our

running time appears linear in the problem size in practice.

The algorithm makes very few assumptions about the patterns

of the antennas’ directionality or the environment’s path loss.

These algorithms directly subsume power control and rate

selection, and the same decomposition structure can form

a basis for other algorithms and protocols, including ones

addressing different physical parameters or making different

optimality-overhead tradeoffs.

Though subject to some convexity requirements, the pattern

of signal quality price decomposition generalizes to a wide

range of joint optimization problems involving interacting

radio-frequency systems [35]. We firmly believe that opti-

mization decomposition is a paradigm that will drive next-

generation wireless networks and offer our work here as an

important step towards realizing the theoretical gains of this

approach in real systems.
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