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Abstract—In this paper we present results from the first
application of robust geostatistical modeling techniques to radio
environment and coverage mapping of wireless networks. We
perform our analysis of these methods with a case study mapping
the coverage of a 2.5 GHz WiMax network at the University of =
Colorado, Boulder. Drawing from our experiences, we propose
several new methods and extensions to basic geostatistical tigo
that are necessary for use in a radio mapping application. We
also derive a set of best practices and discuss potential areas of
future work. We find that this approach to radio environment
mapping is feasible and produces maps that are more accurate [

and informative than both explicitly tuned path loss models and 2 Mt
basic data fitting approaches. (@) (b)
I. INTRODUCTION Fig. 1. Examples of coverage map (for CU WiMax cuEN node) oyeda

. L . in Google Earth. Green regions indicate strong signal addegions indicate
Today, wireless networks are ubiquitous and the importanggak signal.

of their role in our daily lives cannot be underestimatedaTofor practical use in applications that demand high fidelity
large extent, our ability to build and understand these adtsv maps.
hinges on understanding how wireless signals are atteshuateThe limitations ofa priori models have led some researchers
over distance in realistic environments. By predicting th® an integrated solution that combines some number of daref
attenuation of a radio signal we can better plan and diagnaseasurements with predictions (interpolation) (e.g.).[Bhd,
networks as well as build futuristic networks that are awaraore recently, some researchers have looked to the pramisin
of, and adapt to, the spatiotemporal radio environment. Farea of geostatistics as a method of modeling the spatial
instance, today’s network engineers need methods for acstructure of the radio environment [4], [5]. In this paper,
rately mapping the extent of coverage of existing and pldnnee give a first practical application of geostatistical noekh
networks, yet the efficacy of those approaches is determingfdspatial sampling and interpolation (termed “Kriging” in
by the predictive power of the underlying path loss modéhe geostatistical literature) to the task of mapping thgiora
(or interpolation regime). Similarly, researchers thaestigate environment of a production wireless network. Our approach
Dynamic Spectrum Access (DSA) networks require accuratemplimentsa priori modeling, by suggesting a statistically
Radio Environment Map (REM)s to automate appropriate amabust method for using measurements ctmrrect residual
timely frequency allocation decisions, yet the perforneanerror from deterministic modelée.g., ray-tracing or statistical
of these systems is tied intimately to their ability to makenethods) and common empirical fitting approaches to pre-
meaningful predictions about the current and future ocoapa dicting path loss (e.g., power law fitting). In this way, di@
of the radio channel. maps can be generated for both large scale fades, as well as a
Although numerous models have been proposed to predittar quantification of how small scale fades contributent t
the vagaries of the radio environmemfpriori, in practice the spatial distribution of intrinsic channel variation. Wertgeout
error associated with these models prevents their use iy mar evaluation using a 2.5 GHz WiMax network operated by
applications [1]. The most promising of these models, whidhe University of Colorado at Boulder. We use our experisnce
involve explicit calculation of diffractions due to obskes from this case study to develop a set of best-practices for
(e.g., [2]), may be more accurate, but have prohibitive datfae geostatistical mapping of similar radio environmeats]
requirements—precise vector models of all three dimensiorsow the real-world abilities of these methods. Figure Iasho
structures (e.g., buildings and foliage). In the majority can example of a map produced by our method, overlayed on
situations where the available environmental data is éichitr Google Earth.
of low resolution, it is not clear how these models’ accurgcy In the next section, we will provide some background on
affected, and hence they may not be well enough understagbstatistical modeling and on existing work that has psedo



the application of geostatistics to the radio environmeapm between neighboring measurements) so that relationship be
ping problem. In section Ill, we will describe our approach ttween variance and distance can be sufficiently estimated. |
geostatistical modeling and interpolation and in sectdnve particular, clustered measurements are generally retjige
will put these ideas to use in a case study involving mappimgodel small scale effects (i.e., variance from measuresent
the coverage of a set of WiMax base-stations on the Uniyersgeparated by distances smaller than the lag distance)],In [9
of Colorado campus. Finally, in section V, we will conclud®lea investigates multiple initial sampling schemes. Is hi
and provide a summary of derived best practices. approach, universal Krigigs used to select between several
Il BACKGROUND AND RELATED WORK specific designs so tha}t_ standard error is. miqimizgd. Olea
' strongly endorses stratified random sampling in this work,
There are a number of fine textbooks that cover the topigit it is not clear how well this mechanism works in other
geostatistics in depth (e.g., [6], [7], [8]). In this secti?ve domains. In [10], Yfantis et al. study the efficiency of Krigi
aim to provide a brief overview of the relevant backgroungstimation for various types of sampling lattices. They fimat
material and prior work. for the majority of cases, where the nugget effect (intdnsi
We claim that the task of practical radio environmenfariation) is small relative to the total variance, a triang
mapping can be summarized by five equally important amgk grid-based sample is the most efficient initial sampling

challenging questions: scheme. The authors suggest that a small pilot sample be used

o Sampling: Where should measurements be made amal chose an appropriate density and grid pattern for sagplin
how many are necessary? If something is known about the underlying process and

« Metrics: What should be measured and how shoulids variability, an optimization scheme can be used to $elec
performance/interference be quantified? the best initial sample. For instance, in [11], van Groemiga

« Interpolation: What is the (predicted) value at points thaet al., present a framework for Spatial Simulated Annealing
we have not measured? (SSA) which uses a fitness function that either spreads goint

« Storage: How can the resulting maps and models bmaximally, or chooses their lags according to a prescribed
efficiently stored and queried? distribution. In SSA, points are varied randomly in a hill-

« Visualization: How can the stored information be effecclimbing fashion so that an (at least locally) optimal saenigl
tively communicated to an end user or network engineecfosen. After the initial sample is chosen, and used to dpvel

A complete solution to the mapping problem must addred8 initial model, further refinement can be accomplishedh wit
each of these. In our work here, we have focused on tfossibly iterative) “second phase” sampling. There hambe
problems of sampling and interpolation. We have developé@me work done in earth sciences [12] and machine learning
modest solutions to the other three problems as well: we Ud8] to determine how additional samples should be selected
multiple standard, passive metrics in our measurements dAdthis work we take the approach advocated by Yfantis et
propose a method of data combining and visualization thak and perform an initial sample on an equilateral triangul
address some of the problems of storage and visualizati#tice, with some clustered measurements at small random
but leaves many questions unanswered. Although they are lagts. In future work we expect to investigate methods of
discussed in detail here, we expect to give a more thoroug@cond phase sampling appropriate for this domain
treatment of these problems in future work. In the remainderA final important question for scalability is whether some or
of this section, we will provide background on the problemal!l of these samples can be collected automatically, perbgp

of sampling and interpolation to give context to our apphoacusers of the network being studied itself (“crowd sourcjng”
Although there have been some recent developments in the

A. Sampling area of crowd-sourced network measurement (e.g., [14]), it

Choosing an appropriate sampling scheme is applicatinnot clear whether commodity devices are able to collect
dependent. The shape and variance of the field, as wellragasurements with sufficient fidelity to be of use for REM
domain-specific knowledge about the process being modelagplications. Although mobility models may offer some kijnt
must be considered when selecting a sampling strategysi€lagt is also not clear whether users visit the locations whega-m
spatial sampling schemes can be subdivided into (a) simgslerements are needed most, or whether the stochastic teimpor
random sampling (SRS) where points are selected uniforntigture of crowd-sourced measurements affect model poecisi
at random, (b) systematic (grid-based) sampling design)s, (n future work we hope to study the practical limitations of
stratified, where some regions are sampled more heavily thaowd-sourced sampling, and determine whether this approa
others, or (d) some hybrid approach marrying systematitan be used to scale empirical REM data collection to large
stratified, and random designs. (country-sized, perhaps) areas.

For the purposes of geostatistical modeling, there are two

important criteria that must be considered when selecting a i .
initial sampling design. First, samples must cover the 4oea The problem of interpolation is at the center of any measure-

be sampled so that no two points are too far apart, whighent based approach to radio environment mapping. Int@rpol
decreases interpolation resolutiqn. Second, some nurﬂber Quniversal Kriging (UK) and Ordinary Kriging (OK) are intestation
samples must be taken at a variety of lags (i.e., the distanehniques used in geostatistics. They will be discussedare depth below.

Interpolation



tion attempts to use some number of measurements to predict I1l. METHOD
the value at points that have not been measured. One solutions e assume that there is a random field that we are

from the field of geostatistics, is known as Kriging after thg,ogeling calledz, then the value of that field at a point in
seminal work of Dain Krige on mine valuation in the 1950'%pacex is Z(x). The field can be defined in any dimension,
and 60’s. As compared to alternative methods of interpaati, ¢ typically we would assume that € R” with n = 2 or

mapping, such as Inverse Distance Weighting (IDW), Kriging _ 3 \we can then define the value at any point as the field
has three important benefits: (1) it is preceded by an amlygiean () plus some errore(x)):

of the spatial structure of the data and an estimate of the

average §patial variabiliity of .the data i.s integrated irtie t . Z(x) = p + €(x) 1)
interpolation process vis a vis the variogram model, (2) it

is an exact interpolation method meaning that when data isThis model, which is used in Ordinary Kriging (OK),
available at a given point, the interpolated map has exacfigsumes a constant (stationary) mean in space. Geneaaigzat
that measured value at that point, and (3) since it is a robiigat drop this assumption allow for nonlinear constructiand
statistical method, it provides a per-prediction indicatiof are generally termed Universal Kriging (UK), but are likely

estimation standard error via the square root of the Krigirgyerpowered for this application. As we will show below, OK
variance [7]. methods are sufficiently powerful if care is taken to remove

trend (bias) from the process prior to modeling.

There have been several papers that have attempted toAleThe Variogram

velop interpolation strategies appropriate for wirele®gecage  Central to geostatistics is the variogram, a function that
mapping. In [15], Connellet al. suggest a way to interpolatemodels the variance between two points in space as a function
between Received Signal Strength (RSS) measurements ugifighe distance between theth)( In the case of grid-sampled
IDW and claim less than 1 dB interpolation error. Althoughie|ds, the distance between measurements is a fixed lag dis-
promising, this work makes strong simplifying assumptiongnce. Randomized and optimized sampling schemes produce

(for instance, assuming propagation stops after 100 mctwhiyariable lag distances. The theoretical variogram is 8lpic
prohibit use in the applications we are considering hergyitten as:

In [16], Dall’Anese suggests a way to use distributed mea-

surgments from sensors to dete_rmlne a sparsity promoting ~(h) = 1E[(Z(x—|—h) ~ Z(x))% )

Weighted Least Squares (WLS) interpolated coverage map. 2

The authors assume that the location of sensors is not ctfinwe know that the field is second order stationary (i.e., a

trollable and that the principle application is in empitiga measurement at the same point will not vary with time, and

determining a safe transmit power for a given radio so #isedifferencebetween two measurements is also constant with

to avoid interfering with primary users (PUs). In [4], Konakime), then the covariance function (correllelogram) ifirckl

proposes the use of Ordinary Kriging (OK) over grid-sampleaks:

data for mapping coverage and shows that this approach can

outperform a neural network trained model presented in.[17]

Finally, [18] provides a tutorial addressing the use of asi C 1) = E[(Z(x) = u)(Z(x +h) — u)] = C(0) = y(h) (3)

geostatistical interpolation for estimating radio-efecexpo- The assumption of second order stationarity may not be

sure levels. While not StriCtly the same as wireless netWOgléfe for many radio environmentS, especia”y those op’@'ati

propagation, the approach is relevant. at low frequencies. Extending our work here to incorporate
nonstationary models is an exciting area for future work tha

In addition to these works, there have been several rec&hfutside of the scope at present. _
publications by Riihrvi et al. that discuss the use of spatial T we have some set of measurements, we can define an
statistics to model radio propagation [19], [5]. Like [4hig ©€mPpirical variogram:
work presumes a sampling on a regular rectangular grid. L&

Measurements are used to fit a semivariogram and several v (h;) = 72(2(’(1 +h;) — Z(x;))? 4)

underlying functions are investigated. In [20], the aughor 2n j=1

suggest how this method can be used to more compacily storg typical problem is to fit a variogram model (or correllel-

radio environment maps and in [21] the authors investigag) ram) to an empirical variogram curve, given some number

how the placement of transmitters., terrain rouglhness, measurements. There are a number of models that can be
assumed path loss effects the efficacy of the mterpolat?ged for fitting. One example is the exponential model:
field. In this paper, we build upon the foundational work o

Riihijarvi and Konak by making an empirical evaluation of _

) " y . 9 . P ’Yewp(h) =7+ 02(1 —e€ h/¢) %)
these geostatistical techniques, applying them to thergkne
case of coverage mapping, and evaluating them in a realistidn this equation,r> is known as the nugget variance and
environment. is used to model discontinuity around the origin. In radio,



this would correspond to the intrinsic variation (small lscawhere is called the Lagrange parameter. This interpolation
fading) of the channel? is known as the sill because it setss “exact”, meaning that/x (x') = Z(x) if x = x’. This

the maximum value (variance) of the semivariogram. Largapproach can be used for mapping by Kriging the value at
values ofo will increase the level at which the curve flattengach pixel position. In this application, the system in eiqua
out. Finally, the parametep acts as a scale and affects th® is solved for each unknown pixel valug’). This constitutes
overall shape of the curve. The value ofdetermines the a substantial amount of work, but is trivially parallelibéa
rate at which variance is expected to appear as a function(efg., by performing each pixel calculation simultanepusi
distance (lag) between points. There are a number of otheiThe quality of an interpolated field depends on the goodness
models, such as the Gaussian, Cauchy, andeMamodels, of the fitted variogram ). In addition to this, there are
which may or may not be the best fit depending on the?data number of different ways to adapt Kriging to a specific
As we will see for the networks and metrics we study herdata set. Anisotropic corrections are of particular irdere
the classical Gaussian and Cubic models perform well. for coverage mapping. This approach assumes that the field
this work we perform variogram fitting using the weightednay require different statistics (i.e., a different varag and
least squares (WLS) method described in [23], using tip®ssibly fitting method) in different directions from some
implementation available in the R package “geoR” [24]. Ipoint. There is also an entire branch of statistics dealiitg w
our implementation, variogram fitting is automated by fgtin multivariate analysis (co-Kriging).

multiple functions and parameter combinations and cha@osin

the best fit via cross validation. Although computationallf- Detrending

intense, this fitting process can be trivially parallelizedthat In [22], Olea et al describe the importance of removing
it can be accomplished quickly. For instance, by computinghy sources of nonlinear trend from measurements so that
and cross-validating fits in parallel. Data-parallelisrm @so the fitted (interpolated) field complies with the basic tenet
be acheived by fitting measurements from each transmitigrgeostatistics. To this end, we introduce a hybrid apgtoac
separately, in parallel. where a predictive (empirical) model is used to calculae th
predicted path loss value at each measurement point. This

) _ _ _ . approach differs from the direct fitting method suggested by
OK is an interpolation technique that predicts the unknowjihijarvi and Konak. In our method, the model prediction is

value at a new locationZ(x’)) from the weighted known subtracted from the observed value to obtain the residual, o

B. Kriging

values at neighboring locationg,{: error:
Z(x') =) wiZ(x;) (6) Z'(x) = Z(x) — P(x) (10)
=0

whereZ’() is the residual (de-trended measurements) process,
Z() is the observed process arm¥() is the model predic-
tion. This approach to detrending is entirely modular and
extensible—P() can be replaced with any predictive model.
oy = E[(Z1(x') — Z(x')?] (7) In this way, the geostatistical interpolation can be viewed
as a careful way to correct for any remaining (environment
specific) model error, instead of as a complete replacement.
And, as the state of the art in path loss modeling is advanced

a—_ " further, and models are able to make predictions closer to
o = —'y(x'—x’)—z Zwiwj’y(xi—xj)+2 Zwm(xi—x/) ’
i=1

To determine the optimal weightsv, we must minimize the
estimation variance%:

measurements, this improvement can be carried through to
8) measurement-based interpolation in the process of dditrgn
which leads to the system of equations: as described here. .
In our work here, we detrend signal strength measurements
with a fitted model for path loss from [1]. First, we convert

i=1j=1

Yxr—x1) e y(x—x) 1 w1 the measurements from signal power/ratio (i.e., Carrier to
) : Interference and Noise Ratio (CINR)), to path loss. This
: : : (9) _ : o
Y(Xp —%x1) o0 y(xXp —xn) 1 wy, requires some basic knowledge about the transmitter:rtriins
1 1 0 M power (P, in dBm), antenna gain in the direction of the
(x1 — xo) receiver (G:,(6) in dB), and an assumed constant noise floor
T 0 value (V in dBm, set to -95 here).
V(Xn - Xo) Zp(x) = (Pip + G12(8)) = N = Zeinr(x)  (12)

If this information is not known, approximate values can
2[22] provides an excellent survey of these models. be substituted which will be corrected automatically in the



o ; a1 Name | Dir. | Freq.| Longitude Latitude | AGL (m)
fitting process, and should have no discernable ill-effatt CUGW 235 1530 | 105267778 40 008056 5

the accuracy of the interpolation. CUGE | 90 | 2520 | -105.267778| 40.008056| 46
Using the observations from each transmitter, we fit the pa-cuee | 120 | 2530 | -105.263056| 40.007222 34

rametersy (path loss exponent) and(offset) in the following | cuEW | 240 | 2510 | -105.263333| 40.007222 34
equation: CUEN 0 2578 | -105.263333| 40.007222 34

TABLE |
SPECIFICATIONS OF FOURUNIVERSITY OF COLORADO WIMAX BSs.

P(x) = al0logyp(d) + 20logio(f) + 32.45 + ¢ (12)

where d is the distance from the point to the transmitter
in km and f is the frequency of the transmission in MHz
Subtracting the fitted value @?() for from each measuremen
gives the de-trended observatiorfs (x)), which can then be
used to fit an empirical variogram model.

D. Summary of Complete Method

In summary, the complete mapping process is as follo
We begin by determining the extent of the area of interegs
and defining a bounding box for measurements (and pred
tion). Following the best practices for geostatistical pang
described in section 1I-A, a uniform (equilateral triangl
sample grid is generated and used for the initial samplirg
Some small number of pilot measurements may be neces
to determine an appropriate lag distance (sampling dgns
for this grid.

Next, measurements are taken at the grid points. At a su
of grid locations, random clustered measurements are a
taken within 40 wavelengths (4.8 m) of the original point
When the resulting data from the initial sample is available,
it must be inspected for sources of systematic bias afd: 2. Map of University of Colorado and 100m uniform eqtéfal

friangular sample. Measurements are limited to the main camphishvis
measurement error. Sources of measurement error may dlﬁgtﬁned in red.
from campaign to campaign, but are generally systemaég (i.

equipment or procedural error) or spatial (i.e., sourcesir of five WiMax base-stations deployed on the University of

or interference stemming from the position of the MeasureMe&- 040 at Boulder campus operating at 2.5 GHz within an

apparatus relative to its surroundings). When bias is Sm@eceducational spectrum license held by the University. Altjto

in the measurem(_ents, these issues must be approached 'Prﬂsastudy seeks to map the coverage of this network, the
case-by-case basis. roblem is analogous to passively mapping the coverage

Next, using the method described in section 1I-C, wi f a Primary User (PU) or an interfering (possibly rogue)
detrend the measurements. The detrended measurement§réall§:gmitter

then used to generate an empirical variogram, and theatetic To determine an appropriate samoling density. we oroto-
variogram fit as described in section IlI-A. Using the vari- bprop Ping Y, P

ogram and measurements, a WLS OK method can be useéy%ed our met_hods on publlcl_y available data, collectemfro
adnunlupal wireless network in Portland, Oregon operating

interpolate the values at each pixel location. We recommen Similar frequency (2.4 GHz) [25]. Based on this pilot study

0.2 pixels per meter for high resolution maps, and 0.05 pixe? L . .
. . we chose to perform an initial sample on a uniform equildtera
per meter for low resolution (prototyping) maps.

The O process produces = map wih an o007 tce, olowng e recommencation of 1KY
value and error (Kriging variance) at each pixel Iocatior§1eagsurements.to the main University of Color:ildo campus
This step requires substantial computation (especiallyigit Y puS.

resolutions). Optionally, second-phase samples can hmta’(:'gure 2 shows the main campus along with points at which

to fine tune the model and reduce residual error further.rAft\éVe aimed to collect samples. The shape of the University is

- . . - vaguely triangular, with the longest side measuring 1.5 koh a
each round of additional sampling, the variogram fitting a horter sid ina 1.1 k o total o
Kriging steps must be repeated. Finally, the trend is add shorter side measuring . 5 M, giving a total measuremen
back to pixel values to produce a final raster image. area of shghtly more thas25m . ) ,
Of the five WiMax Base Station (BS)s being studied, four
IV. CASE STUDY: WIMAX are managed by the University of Colorado Office of Infor-
In this section, we describe a case study conducted speaifation and Technology (OIT) and primarily provide backhaul
ically for the purpose of evaluating the efficacy of Kriging-coverage to buses in and around Boulder. The fifth is a Global
based coverage mapping. Our aim here is to map the cover&gwironment for Networking Innovation (GENI) testbed node



Measurement g\ / A made to ensure that no metallic objects are in close proximit
to the elevated measurement antenna.
We chose to focus our measurement effort on four important
726 first order metrics of channel performance that can be deltec
”‘Gé passively: CINR, Relative Constellation Error (RCE), Erro
"% |anennancL  Vector Magnitude (EVM), and subcarrier spectrum flatness.
50 Height: CINR provides a measurement of pure received power above

. 20m ) . . .
- W noise, calculated from a clean carrier wave transmitted in
i rt ” . .
(wistee! frame). e the preamble of the WiMax frames. RCE and EVM quantify
the amount of error in a binary or quaternary constellation
| Spectrum | i Control B : : : : _
| Anayzer || Commuer | plot, which provides a tight estimate of physical-layeroerr

U Finally, subcarrier spectrum flatness is the amount of gain

GPS Unit 2
GPS Unit 1

# Schedule 40 PVC

To Bike

\ or attenuation on each of 52 (or more) subcarriers within
the bandwidth relative to the mean signal strength. Usieg th
spectrum flatness data, we are able to calculate EffectgyreaSi

to Noise Ratio (ESNR), the metric shown in [27] to be a
. trong predictor of actual network performance (as contpare
meant for research purposes [26]. Table | provides detaflosthe more traditional metrics such as Signal to Noise Ratio

. . X 3
3:2”; ?r?alloncea}uggnznw? df[:r? rg;gféa&oﬁzmhgsghggﬁi nrcéie:ecégr’\m) and RSS). We verified this result for WiMax networks
’ 9 performing upstream and downstream throughput tests to

antenna (excepting the GENI_node wh|ch has a 120 degrté/ Access Service Network (ASN) gateway at a random
sector), and operate at a nominal transmit power of 40 dBm. atial) sample of points—both ESNR and CINR appear to

. (S
Two BSs are deployed on the Gamow Physics Tower (pomulbé) reasonable physical layer predictors of applicatioreday
east (CUGE) and west (cuGW)) and three on the Eng'nee“n?rformance. ESNR can be thought of the average SNR

(Ccirg\%))tower (pointing north (CUEN), east (CUEE), and we equired to produce the error process seen on each individua
' subcarrier. In this paper we use the label “ESNR6” to refer
A. Measurement Apparatus and Procedure tp the ESNR metric using the modulation used a'F 6 Mbps
(i.e., QPSK), and “ESNR54” for the ESNR metric using
In order to make measurements in arbitrary locations, whighe 54 Mbps modulation (i.e., QAM). Although we have
might not be accessible with a large vehicle, we construateq,seq sensitive measurement equipment to ensure accuracy in
measurement apparatus of our own design, built into a smgjis study, recent work using commodity devices (e.g., [28]
cart. The cart provides a stable platform on two wheels al[@b]), suggest that future systems may be largely impleeent
can be connected to a bicycle or used as a hand-cart. Figih inexpensive and easily obtainable hardware, which may
3 shows the design and layout of the measurement cart. difeady be available in some end-user mobile devices.
collect measurements, we make use of an Anritsu MS2721Bgefore we begin measurement, we must define a policy for
portable spectrum analyzer. This analyzer is unique in thgkating and measuring at sample sites. After some exparime
it is both battery-powered and portable, as well as havingiion with direct location using a GPS device, we settled on
the ability to demodulate WiMax transmissions and recorg simple solution involving a printed map similar to the map

protocol-specific quality metrics. To control the spectrumy figure 2. We visit each site without any particular order.
analyzer, we use the Virtual Instrument Software Archieet |, he event that it is impossible to make a measurement at

(VISA) National Instruments (NI) interface. A small nethoo g sjte, either because it falls in an inaccessible (iemcéd)

laptop running Ubuntu Linux is connected to the spectrulles o within a building, we instead measure the closesit poi
analyzer with a single Category 5 (CATS) crossover c_abI&,¥ straight line distance) that is accessible. Althougéreh
This laptop controls the spectrum analyzer using a series;Qisome random error associated with locating points (due to
VISA commands, which allows for measurement scripting 08ps accuracy, point finding, and obstacles), we claim thist th
the laptop. Two Global Positioning System (GPS) devicggror is not harmfully aligned with any environmental featu
are used to record position, one connected to the spectriyfy jnstead amounts to random jitter about the uniformly
analyzer and one a hand-held Garmin GPS60 dévithe gojected sample sites (which some spatial sampling studies
measurement antenna for the spectrum analyzer is raisef| o actually purposely advocated).

m fro-m the ground using a p_iece O_f schedule-40 Polyvinyl At each measurement location, a wireless keyboardsed
Chlor|de (PV_C) (non-conductive) pipe, and atta_ched ) W'% manage the control computer (which keeps the experimente
plastic cable ties. Although the cart itself is conducticare is away from the apparatus, preventing them from interfering
with the measurements themselves) and the control computer

Fig. 3. Diagram of WiMax measurement cart.

3Unless otherwise specified, all latitude and longitude dimates are given
in WGS84/EPSG:4326 and UTM coordinates in EPSG:32160.

“We chose to use a hand-held GPS device after finding the Alsri@PS 5The keyboard operates in the 2.4 GHz spectrum, and hence afill n
support to be very unreliable. interfere with our measurements around 2.5 GHz.



CINR versus RMS RCE CINR versus RMS EVM

provides feedback through an amplified speaker utilizirxgr te
to-speech synthesis software. At each point, three regeate
measurements are made of downstream system performance”
using the various metrics. At a subset of points, additional
clustered measurements were taken within a 40 wavelengthé H
(~ 4.8 m) radius of each true point. The combination of °
repeating measurements in time and space, allows for decura
estimation and averaging of intrinsic channel variabititye . .
to small scale fading effects and instrument error. ¢ T
The device first picks a given channel (carrier frequency)
and then records all metrics for each measurement in turn.
Then it switches to a different channel and repeats. While the Effective SNR (6) versus CINR Effective SNR (5¢) versus CINR
device is performing measurements, the experimenter tises t
handheld GPS device to record the current position, sample -«
location (each sample site is assigned a unique identiéad),
GPS accuracy. At the end of a measurement effort (typically ¢~
when the analyzer's battery is flat), the cart is returned to -
the laboratory for charging and data offload. The spectrum
analyzer stores measurements in a proprietary, but patn/t
format that can be easily parsed. T T PR R S S

ESNR6 ESNRS4

CINR
o

(@ RCE (b) EVM

CINR

B. Possible Sources of Systematic Sampling Error (c) ESNR6 (d) ESNR54

During our measurement campaign, three individuals used
the cart to make measurements. Although all three measurers
were collecting measurements using the same procedure, mn@rovided by the CINR measurement. It is worth noting
possible source of systematic error is from the measurehat in the process of data collection, we have recorded a
themselves. No significant correlation is present in terfns complete constellation plot for each measurement so wedcoul
location error or measurement variation and hence we dfso calculate RCE ourselves. The relationship betweenRESN
not correct for this bias in subsequent analysis. It is wortind CINR is less trivial, especially for the lower (PhaseftShi
noting that some measurements are distant from their irttneying (PSK) modulation based) bitrates. The higher hegat
location. This occurs (as discussed above), when a pointwhich use Quadrature Amplitude Modulation (QAM), tend
unreachable. So long as the new measurement point ist@shave a fairly well defined linear correlation with CINR.
close to the original measurement location as possible afideast squares fit of ESNR54 to CINR is very good with
there is no systematic error or systematic terrain aligrimeadjusted R? of 0.90 and mean residual error of 1.01 (as
these deviations should not effect the quality of the sampleompared with 0.29%? and 8 dB residual error for ESNRG).
We also investigated the relationship between GPS accurddyis suggests that in cases where information about spectru
and channel variation, hypothesizing that GPS accurachimidlatness is unavailable, ESNR54 can be roughly approximated
be weaker in complex environments where signal is alssing CINR measurements.
degraded, but no discernible correlation was present.

Fig. 4. Correlation between metrics and CINR.

D. Spatial Data Characterization and Variogram Fitting

Figure 6 shows CINR measurements taken for the “cuEN”
In this measurement campaign, we collected several p&S. By plotting the measurements in this way, we can identify
formance metrics besides the classic signal strength or-SNRy sources of skew and bias in the measurements, as well

equivalent metrics. One question that naturally arisesiie: as understand their distributional spread and variancer pri
these more robust metrics trivially correlated with simpleo geostatistical modeling. All four metrics produce a &mi

and easy to collect metrics such as CINR. Figure 4 plospatial distribution of values with large path loss or error
the relationship between CINR and each of the other mewlues to the southwest and smaller (better) values to the
rics studied. RCE and EVM appear to be a simple (bubrth. All metrics have different value distributions, kthie
nonlinear) function of CINR, at least as calculated by thESNR54 and and CINR metrics appear to share the same basic
spectrum analyzer used in this study. There are several wakswed lognormal shape. Figure 5 shows the fitted relatipnsh
that EVM can be calculated from the constellation plot angetween path loss and distance for the three SNR-like nsetric
observed power of constellation points. It appears that thi@e fits are poor, but appear to at least account for some basic
Anritsu spectrum analyzer is calculating EVM from CINR otrend, which we can remove to improve the efficacy of the
vice versa. RCE is calculated directly from the EVM valu&riging process. At locations where we attempt, but fail, to
and hence is equivalent. Given this, RCE and EVM do natake a measurement, we use a noise-floor value. We call these
appear to provide novel information above and beyond wHaiull measurements”. For the SNR-like metrics, we use 1.0

C. Correlation Between Metrics
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Fig. 5. De-trending fits for the CU WiMax cuEN (GENI) node. @tihe metrics that can be converted to path loss and de-trghdedSNR and equivalents)

are shown.
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Measurement spatial structure for CU WiMax cuEN (GEGINR

In this data set, the best fits are generally truncated, but
without inclusion of null measurements. This differs fromr o
pilot study with the data at [25], but makes sense given tiet t
sampling has been carried out in a consistent way here, which
perhaps is able to model the decay of the signal towards the
noise floor without including “implicit” measurements. The
best fits are split fairly evenly between Gaussian and cubic
models, with a slight preference for Gaussian.

The goodness of these nonlinear fits is determined via
experimental cross validation. We randomly exclude 20% of
points, and use the remaining points to predict the value of
each excluded point. This results in root mean square error
(RMSE) and mean square-root of kriging variance (MSKY,
i.e., model standard error) reported the table. We can see
that the quality of fit is clearly correlated with the metric
used—CINR fits much more cleanly than the ESNR metrics.
The CINR fits result in a residual standard error of 2-4 dB
depending on the AP being modeled, which is quite good by
the standard of priori models[1]. The worst fits, for the
ESNR metrics, produce 9-10 dB residual error, which is on
the same scale agata-fitted path loss models. To highlight
this improvement, a final column in this table provides the
gain acheived in terms of dB RMSE over a simple data-fitting
method. Why the ESNR metrics appear to be more difficult to

and for EVM, we use 100 (i.e., 100% probability of error) afit is an open question. However, it may be due to the fact that
the null measurement value.

After detrending and accounting for null measurements, wéereas CINR is a single continuous variable. In addition to

ENSR involves discrete steps (and more degrees of freedom)

can proceed with variogram fitting. Figure 7, shows the fitte¢fandard error, we have also calculated the gain (reduction
variograms for cuEN. The fits are truncated at 1 km here, singeerror) versus an explicit log/log fit to the measurements.
this is approximately the diameter of the measurement negidVe can see that the geostatistical fitting method produces a
and measurements further apart than that are unlikely (@edest reduction in residual error for all metrics and alsBS
erroneous). Because we have attempted to model the nugiygough the gain over an explicit log/log fit is small, ths i
variance explicitly with clustered measurements, we can gcouraging since the geostatistical model has more degree
the nugget tolerance to z&rdThe fitted variogram parametersof freedom and includes knowledge of spatial structure.
are summarized in table II. E. Mapping with Ordinary Kriging

Mapping proceeds by Kriging each pixel in the prediction
region and then creating a color map by interpolating the

5Nugget tolerance is the distance within which measuremeetsa@nsid-
ered to be effectively colocated.



BS Metric Model ) 72 o2 N Trunc/Neg Mean K-Var [ Mean RMSE| Gain
CUEW EVM gaussian| 697.13 | 199.12 | 351.34| 150 | FALSE/FALSE 15.00 16.05 N/A
CUEW CINR cubic 1839.69| 3.99 19.38 | 150 | FALSE/FALSE 2.16 2.75 17.54

cuEE/cuGW | ESNR54 cubic 2183.29| 115.19| 81.75 | 147 | TRUE/FALSE 11.09 9.27 5.88

CUEE/cuGW/| ESNR6 cubic 1253.62| 91.27 45.66 | 147 | FALSE/FALSE 9.95 9.50 2.68

CUEE/cuGW EVM cubic 771.36 | 259.17 | 396.46| 147 | TRUE/FALSE 17.68 15.91 N/A

CUEE/cuGW/| CINR gaussian| 541.94 8.48 9.30 147 | TRUE/FALSE 3.04 2.87 12.65
cuGE ESNR54 | gaussian| 2340.33| 34.11 | 437.08| 182 | TRUE/FALSE 5.93 6.91 7.15
cuGE ESNR6 | gaussian| 380.27 | 49.67 39.18 | 182 | TRUE/FALSE 7.34 7.48 2.99
cuGE EVM gaussian| 310.67 | 138.75| 321.18| 182 | TRUE/FALSE 12.67 12.25 N/A
cuGE CINR cubic 1711.76| 6.39 12.31 | 182 | FALSE/FALSE 2.61 2.03 9.80
CuEN ESNR54 cubic 1530.11| 72.81 | 108.83| 146 | TRUE/FALSE 9.00 9.83 7.97
cuEN ESNR6 | gaussian| 746.71 | 118.74| 76.04 | 146 | TRUE/FALSE 11.22 11.21 2.67
CUEN EVM cubic 751.21 | 44498 | 357.14| 146 | FALSE/FALSE 22.84 21.11 N/A
CUEN CINR cubic 1304.05| 14.22 20.04 | 146 | TRUE/FALSE 4.00 4.09 12.80

TABLE I

BEST FIT STATISTICS FOR VARIOGRAM FITTING OFCU WIMAX BSs.
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Fig. 7. Empirical variogram and fits of four metrics for CU WiMakEN (e) ESNR54, Excess (f) ESNR54, Map
(GENI) node.

Fig. 8. Maps for cuGE node. The left maps show the excess (asadter
. . . . trend is removed). The center maps show the re-trended sigmealTha right
kriged value on a color gradient. This color mapping schemgps show the residual kriging variance of the other maps.

was adapted from medical imaging [30] and appears to work

well for visualizing the radio environment. Figure 8 shoWws t

final maps for the cuGE node, which features an interestifjnen comparing those measurements to the predictions for
final propagation pattern. This BS is a 90-degree sectortpoif’® CUEN node, using the CINR metric alone, there is a Root
ing east, and as a result the propagation seems to favor tMgan Square Error (RMSE) of 4.71, slightly higher than that
direction, however, there are clear and significant shadowsfound with cross validation, but still quite good overall.

the west and north.

As a final metric of performance for these maps, eat!:h
map is compared to a random sample of measurements takeRor coverage mapping, per-AP fitting is likely the best
around campus to see how well the maps are able to prediwthod, but in cognitive radio and interference detection
points in betweenthe sample grid. For this experiment, 10@pplications it is necessary to create a composite map using
random sample locations were chosen and tested sequentidita from many transmitters. This can be accomplishedreithe
Measurements were only made of the cuEN node for this telsy. fitting and Kriging the entire set of measurements togethe

Combining and Visualization



or by fitting and Kriging measurements from each transmi
ter separately and then combining the resulting maps. T
first approach is the most conceptually straight forward, b
has some problems. Combining measurements from multi
transmitters may produce a map with a large amount of p
location variation, possibly with colocated points of dieadly

varying value. Exactly colocated measurements of difterin (8) CINR, Map (b) CINR

value can produce unsolvable Kriging equations and must
“jittered” to create a solvable equation with a unique Solut
In the end, this approach can result in a map that is diffic
to interpret and has a large error margin.

Due to the large variance at the same point due to differ
transmitters, the resulting map takes the form of a nea

consfcant value with peaks or holes center_ed at measuremen (©) ESNR6, Map (d) ESNR6
locations. As a result, these data-combined maps do not

provide information about the predicted coverage betwe
points and are generally no more useful than simple col
coded dots located on a map. Given these concerns a
this data combining method, we advocate en post facto
combining which we will describe next.

Ex post factomap combining involves basic geospati

image tiling and combination. We use a basic two-pass method (e) ESNR54, Map (f) ESNR54
that first reads in all the map files to determine the total _ _ _ _
extent of the image, and then overlays the images, combini@ .Rg.me;r(igged maps for combined CU WiMax measurements using the
values at pixels as necessary. There are many ways we can '
combine maps this way, the most obvious is to take the
maximum value for SNR-like metrics or the minimum valugongruity of the maximum combined maps, the threshold maps
for EVM-like metrics. Figure 9 provides the combined mapkgveal fairly disparate contours.
for the CU WiMax measurements using these two combini . .
methods. In the threshold-based con%bining, we count the Small Scale Effects and Nonstationarity
number of transmitters whose interpolated signal is abd@ve 4 In this section we want to understand how measurements
dB CINR(or below 60% in the case of the EVM metrics) an¢ary over small time scales and small distances. An under-
use this count (from 0 to 4) for the map. For the maximundying assumption of the Kriging process is that the process
based combining, we actually use the minimum for the EVMeing modeled is stationary, meaning that the (fitieeanis
metric, since a small value is good in this case. In a cogniti¢gonstant in both time and space. Clearly, this is a strong as-
radio application, a threshold-based map like this could ls&¢mption that the (often chaotic) radio environment isketi
used to locate contiguous regions where it is safe to transnt® obey. It is possible to loosen the stationarity assumptio
These maps make light of a few interesting observatior@, the cost of substantial additional computational work, b
Firstly, the threshold maps make it plain to see regions had N practice most users of Kriging processes opt to accept
contours between them where there is no coverage above i implications of this assumption. By understanding how
given threshold (light red) or substantial overlap (lighten). the radio environment changes over small time scales and
Since two transmitters actually share the same frequencySiall distances, we can put a bound on repeated measurement
this network, regions of light green might actually indizatVvariation and hence a bound on the implicit unavoidablererro
potential for interference at the receiver. The maximum corASsociated with the stationarity assumption.
bining approach is less easy to interpret’ but gives a Cd:mp|e Fadlng in the radio environment can be classified into
picture of the propagation environment on the CU campus. Fpall-scale and large-scale fades. Large scale fadesdshoul
all metriCS, there appears to be a coverage “hole” just \NbStQﬁ fa|r|y constant over small distances and time, and hence
the Gamow tower, located in the center of the map, which maje not troublesome—it is exactly the environment-specific
indicate a misconfiguration in the downtilt of the west-gimig  1arge scale fading effects that our approach models. Haweve
antennas for a building of this height (i.e., more downtilght small-scale fades can be highly varying in time and over
be necessary to avoid this hole). Additionally, the westrfg Small distances because they stem from multipath effeats an
transmitters on the other tower, may fail to cover this ragidPossibly mobile) scatterers. As a practical rule of thunemyn

since the Gamow tower creates a shadow. Despite the seenfiXBerimenters average measurements within 40 wavelengths
(=~ 4.8 m) as a way to “average out” small scale effects [31].

TThis threshold was empirically derived using a random (aatiample 1N this section we seek to validate that standard practice as
of upstream and downstream throughput measurements. well as understand the scale of small scale effects ovet shor




Sampling

Initial Sampling Design| 100m Triangular Lattice with random
L I clustered samples
FALSE TRUE within 40 wavelengths~ 4.8 m)
0 Second Phase Sampling None. A topic forfuture work
0207 I i Unreachable Points Take measurement at nearest
/| accessible location
I Repeated Measurements1-3 per (regular or cluster) location tp
0.15 I - model small scale temporal variation
[ Postprocessing
> [ Null Measurements Include with constant minimum value
2 || i Detrending Subtract off Log/Log fit
8 N || The Variogram
‘° \ Q Variogram Fitting Weighted Least Squares
\ [ Variogram Model Gaussian or Cubic
0057 [ i Variogram Truncation | Necessary. 1000m performs well here.
on Interpolation (Kriging)
/ IWARA! Method Ordinary Kriging
0.00 | e VoMo L Anisotropic Modeling | None. A topic forfuture work
‘ —— T Nugget Tolerance 0
S0 5 100152003 Prediction Resolution | 0.05 (low) - 0.2 (high)
CINR Spread (Range)
TABLE Il
SUMMARY OF DERIVED BEST PRACTICES FOR GEOSTATISTICAL MAPPIG
Fig. 10. Distribution of spread for measurements taken widllinvavelengths OF WIRELESS NETWORK COVERAGE

(~ 4.8 m) of each other (i.e., clustered/TRUE) versus at the sawite pt
different times (i.e., unclustered/FALSE).
metrics which may be due to the fact that these metrics take

time scales. into account more degrees of freedom (i.e., independeitdgad

After the initial University of Colorado at Boulder (CU)on each subcarrier).
WiMax measurement campaign, a second campaign was unAlthough it is likely that the radio environment is nonsta-
dertaken to collect data at clustered locations so thatrtiadls tionary at large time scales (days, weeks, and years), from
scale (in space and time) variation can be compared to laifjese results it appears that the intrinsic variation islyfai
scale trends. To this end, a random subset of approximatstable on small time scales and hence repeated measurements
15 grid points were selected and at each point, three coeplate likely sufficient to characterize intrinsic variabyjlitBe-
measurements were taken at random locations within 40 wageuse the geostatistical method explicitly models, rathan
lengths & 4.8 m) of the original grid point. Figure 10 showsgnores, this intrinsic error, it can be treated as a feadfitae
the amount of measurement spread observed at these clogesylting model instead of noise to be smoothed away. And,
clustered locations versus the amount of measurementdsprearhaps more importantly, by modeling the extent of small
between repeated measurements at the same location. Hegele fading, we can put a lower bound on the achievable
we use the nonparametric Median Absolute Deviation (MADJccuracy ofany mapping campaign in a given environment,
as a measure of spread, although simple range (differendeich helps quantify the obtainable fidelity of our model and
between largest and smallest observation) behaves dinilaalso determine when sufficient measurements have been made.
Although the two distributions are not identical, they dpear
to be Gaussian, with a similar central tendency and spread.
Indeed, we have compared these distributions with a Welchin this paper, we have provided the first complete, real-
two-sample t-test, two-sample Kolmogorov-Smirnov test] a world application of geostatistical modeling and integtimn
Wilcoxan rank sum test (all of which test the null hypothesig the problem of radio environment mapping. Although some
that the difference in central tendency is significant), aade other authors have proposed that geostatistical techsiopag
of the tests are willing to reject the null hypothesis thatdlata be appropriate for the domain, the work here is the first to
are drawn from the same distribution (p-values are betwe®n @ctually apply the concepts and adapt them as necessary for
and 0.5). the mapping of real transmitters. To analyze their efficacy,

As an alternative view of this intrinsic channel varialyilit we have applied these techniques to the task of mapping the
we look at the amount of variation observed between repeatzverage and performance of a WiMax network in Boulder,
measurements taken at the same location as a function aof tifGelorado. Table Ill provides a summary of the best prac-
The amount of variation appears to be fairly stable for all dices derived from this investigation. Additionally, we Jea
the metrics over small time scales (several minutes). Thesieown that this robust coverage map can be produced using
is a slight increase in measurement spread observed for gheeasonably small amount of easily obtained data (several
RCE and EVM measurements, but this does not appear tothendred samples on a hundred meter grid, for a space the size
substantial, and may not be significant. InterestinglyBB&R of a large university campus), which amounts to a tractable
metrics appear to have more intrinsic variation than thgog@m amount of routine “spade work” (approximately three days

V. CONCLUSION



work for a single dedicated experimenter). Automating thigo]

data collection will be an important step for the scalapilit

of this approach, and we believe that there is much promiglg]
in research related to crowd-sourced data collection and in
expensive commodity measurement devices. In forthcomifg!

work, we have investigated the practicality of this apptoas

applied to large service areas, using less careful measmtem [12]

(i.e., drive-test or crowd-sourced). Those results appear

suggest that geostatistical coverage mapping can be dpp['@,,]

effectively and scaled naturally in those domains as well.

In general we see an error reduction of more than 10
dBs over common measurement-based methods and dAta-
tuneda priori models when mapping CINR, and several dBgs]
improvement with ESNR-based metrics. However, to focus
only on the performance improvement is to miss the real
value of the Kriging method. By implementing an appropriatge]

sampling design, modeling the underlying spatial struectfr

the data, and using a statistical method we are able to genera
an interpolated map with a well defined notion of residug7]

error: the prediction at each point is a distribution, not gy

a value. We investigated the scale of small scale fading (
hence deviation from stationarity) in the observationsg an
developed a method for combining observations from muatipl

BS measurement campaigns into one complete REM.

In future work, we will attempt to refine the models with

additional “secondary” measurements that have been chosen
to optimally reduce the residual error of the model. We haYg-O]
also begun to apply these methods to networks using differen

technologies and at different operating frequencies (23 G

WiFi and 700 MHz LTE) with encouraging results. There argll
still important questions in terms of how measurement-thase
radio environment mapping can be automated and how modéf
can be stored and queried efficiently. We offer the current
work as a first attempt to demonstrate the core geostatistifza)

techniques can be effectively and pragmatically applieithis
domain and encourage researchers and commercial net
operators to consider these powerful and statisticallgrags

methods as a promising approach to the problem of empirid#t!
radio environment mapping.
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