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Abstract—In this paper we present results from the first
application of robust geostatistical modeling techniques to radio
environment and coverage mapping of wireless networks. We
perform our analysis of these methods with a case study mapping
the coverage of a 2.5 GHz WiMax network at the University of
Colorado, Boulder. Drawing from our experiences, we propose
several new methods and extensions to basic geostatistical theory
that are necessary for use in a radio mapping application. We
also derive a set of best practices and discuss potential areas of
future work. We find that this approach to radio environment
mapping is feasible and produces maps that are more accurate
and informative than both explicitly tuned path loss models and
basic data fitting approaches.

I. I NTRODUCTION

Today, wireless networks are ubiquitous and the importance
of their role in our daily lives cannot be underestimated. Toa
large extent, our ability to build and understand these networks
hinges on understanding how wireless signals are attenuated
over distance in realistic environments. By predicting the
attenuation of a radio signal we can better plan and diagnose
networks as well as build futuristic networks that are aware
of, and adapt to, the spatiotemporal radio environment. For
instance, today’s network engineers need methods for accu-
rately mapping the extent of coverage of existing and planned
networks, yet the efficacy of those approaches is determined
by the predictive power of the underlying path loss model
(or interpolation regime). Similarly, researchers that investigate
Dynamic Spectrum Access (DSA) networks require accurate
Radio Environment Map (REM)s to automate appropriate and
timely frequency allocation decisions, yet the performance
of these systems is tied intimately to their ability to make
meaningful predictions about the current and future occupancy
of the radio channel.

Although numerous models have been proposed to predict
the vagaries of the radio environmenta priori, in practice the
error associated with these models prevents their use in many
applications [1]. The most promising of these models, which
involve explicit calculation of diffractions due to obstacles
(e.g., [2]), may be more accurate, but have prohibitive data
requirements—precise vector models of all three dimensional
structures (e.g., buildings and foliage). In the majority of
situations where the available environmental data is limited or
of low resolution, it is not clear how these models’ accuracyis
affected, and hence they may not be well enough understood
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Fig. 1. Examples of coverage map (for CU WiMax cuEN node) overlayed
in Google Earth. Green regions indicate strong signal and red regions indicate
weak signal.
for practical use in applications that demand high fidelity
maps.

The limitations ofa priori models have led some researchers
to an integrated solution that combines some number of careful
measurements with predictions (interpolation) (e.g., [3]). And,
more recently, some researchers have looked to the promising
area of geostatistics as a method of modeling the spatial
structure of the radio environment [4], [5]. In this paper,
we give a first practical application of geostatistical methods
of spatial sampling and interpolation (termed “Kriging” in
the geostatistical literature) to the task of mapping the radio
environment of a production wireless network. Our approach
complimentsa priori modeling, by suggesting a statistically
robust method for using measurements tocorrect residual
error from deterministic models(e.g., ray-tracing or statistical
methods) and common empirical fitting approaches to pre-
dicting path loss (e.g., power law fitting). In this way, detailed
maps can be generated for both large scale fades, as well as a
clear quantification of how small scale fades contribute to the
spatial distribution of intrinsic channel variation. We carry out
our evaluation using a 2.5 GHz WiMax network operated by
the University of Colorado at Boulder. We use our experiences
from this case study to develop a set of best-practices for
the geostatistical mapping of similar radio environments,and
show the real-world abilities of these methods. Figure 1 shows
an example of a map produced by our method, overlayed on
Google Earth.

In the next section, we will provide some background on
geostatistical modeling and on existing work that has proposed



the application of geostatistics to the radio environment map-
ping problem. In section III, we will describe our approach to
geostatistical modeling and interpolation and in section IV we
will put these ideas to use in a case study involving mapping
the coverage of a set of WiMax base-stations on the University
of Colorado campus. Finally, in section V, we will conclude
and provide a summary of derived best practices.

II. BACKGROUND AND RELATED WORK

There are a number of fine textbooks that cover the topic
geostatistics in depth (e.g., [6], [7], [8]). In this section we
aim to provide a brief overview of the relevant background
material and prior work.

We claim that the task of practical radio environment
mapping can be summarized by five equally important and
challenging questions:

• Sampling: Where should measurements be made and
how many are necessary?

• Metrics: What should be measured and how should
performance/interference be quantified?

• Interpolation: What is the (predicted) value at points that
we have not measured?

• Storage: How can the resulting maps and models be
efficiently stored and queried?

• Visualization: How can the stored information be effec-
tively communicated to an end user or network engineer?

A complete solution to the mapping problem must address
each of these. In our work here, we have focused on the
problems of sampling and interpolation. We have developed
modest solutions to the other three problems as well: we use
multiple standard, passive metrics in our measurements and
propose a method of data combining and visualization that
address some of the problems of storage and visualization,
but leaves many questions unanswered. Although they are not
discussed in detail here, we expect to give a more thorough
treatment of these problems in future work. In the remainder
of this section, we will provide background on the problems
of sampling and interpolation to give context to our approach.

A. Sampling

Choosing an appropriate sampling scheme is application
dependent. The shape and variance of the field, as well as
domain-specific knowledge about the process being modeled,
must be considered when selecting a sampling strategy. Classic
spatial sampling schemes can be subdivided into (a) simple
random sampling (SRS) where points are selected uniformly
at random, (b) systematic (grid-based) sampling designs, (c)
stratified, where some regions are sampled more heavily than
others, or (d) some hybrid approach marrying systematic,
stratified, and random designs.

For the purposes of geostatistical modeling, there are two
important criteria that must be considered when selecting an
initial sampling design. First, samples must cover the areato
be sampled so that no two points are too far apart, which
decreases interpolation resolution. Second, some number of
samples must be taken at a variety of lags (i.e., the distance

between neighboring measurements) so that relationship be-
tween variance and distance can be sufficiently estimated. In
particular, clustered measurements are generally required to
model small scale effects (i.e., variance from measurements
separated by distances smaller than the lag distance). In [9],
Olea investigates multiple initial sampling schemes. In his
approach, universal Kriging1 is used to select between several
specific designs so that standard error is minimized. Olea
strongly endorses stratified random sampling in this work,
but it is not clear how well this mechanism works in other
domains. In [10], Yfantis et al. study the efficiency of Kriging
estimation for various types of sampling lattices. They findthat
for the majority of cases, where the nugget effect (intrinsic
variation) is small relative to the total variance, a triangu-
lar grid-based sample is the most efficient initial sampling
scheme. The authors suggest that a small pilot sample be used
to chose an appropriate density and grid pattern for sampling.

If something is known about the underlying process and
its variability, an optimization scheme can be used to select
the best initial sample. For instance, in [11], van Groenigan
et al., present a framework for Spatial Simulated Annealing
(SSA) which uses a fitness function that either spreads points
maximally, or chooses their lags according to a prescribed
distribution. In SSA, points are varied randomly in a hill-
climbing fashion so that an (at least locally) optimal sample is
chosen. After the initial sample is chosen, and used to develop
an initial model, further refinement can be accomplished with
(possibly iterative) “second phase” sampling. There has been
some work done in earth sciences [12] and machine learning
[13] to determine how additional samples should be selected.
In this work we take the approach advocated by Yfantis et
al. and perform an initial sample on an equilateral triangular
lattice, with some clustered measurements at small random
lags. In future work we expect to investigate methods of
second phase sampling appropriate for this domain

A final important question for scalability is whether some or
all of these samples can be collected automatically, perhaps by
users of the network being studied itself (“crowd sourcing”).
Although there have been some recent developments in the
area of crowd-sourced network measurement (e.g., [14]), it
is not clear whether commodity devices are able to collect
measurements with sufficient fidelity to be of use for REM
applications. Although mobility models may offer some hints,
it is also not clear whether users visit the locations where mea-
surements are needed most, or whether the stochastic temporal
nature of crowd-sourced measurements affect model precision.
In future work we hope to study the practical limitations of
crowd-sourced sampling, and determine whether this approach
can be used to scale empirical REM data collection to large
(country-sized, perhaps) areas.

B. Interpolation

The problem of interpolation is at the center of any measure-
ment based approach to radio environment mapping. Interpola-

1Universal Kriging (UK) and Ordinary Kriging (OK) are interpolation
techniques used in geostatistics. They will be discussed inmore depth below.



tion attempts to use some number of measurements to predict
the value at points that have not been measured. One solution,
from the field of geostatistics, is known as Kriging after the
seminal work of Dain Krige on mine valuation in the 1950’s
and 60’s. As compared to alternative methods of interpolative
mapping, such as Inverse Distance Weighting (IDW), Kriging
has three important benefits: (1) it is preceded by an analysis
of the spatial structure of the data and an estimate of the
average spatial variability of the data is integrated into the
interpolation process vis a vis the variogram model, (2) it
is an exact interpolation method meaning that when data is
available at a given point, the interpolated map has exactly
that measured value at that point, and (3) since it is a robust
statistical method, it provides a per-prediction indication of
estimation standard error via the square root of the Kriging
variance [7].

There have been several papers that have attempted to de-
velop interpolation strategies appropriate for wireless coverage
mapping. In [15], Connellyet al. suggest a way to interpolate
between Received Signal Strength (RSS) measurements using
IDW and claim less than 1 dB interpolation error. Although
promising, this work makes strong simplifying assumptions
(for instance, assuming propagation stops after 100 m), which
prohibit use in the applications we are considering here.
In [16], Dall’Anese suggests a way to use distributed mea-
surements from sensors to determine a sparsity promoting
Weighted Least Squares (WLS) interpolated coverage map.
The authors assume that the location of sensors is not con-
trollable and that the principle application is in empirically
determining a safe transmit power for a given radio so as
to avoid interfering with primary users (PUs). In [4], Konak
proposes the use of Ordinary Kriging (OK) over grid-sampled
data for mapping coverage and shows that this approach can
outperform a neural network trained model presented in [17].
Finally, [18] provides a tutorial addressing the use of basic
geostatistical interpolation for estimating radio-electric expo-
sure levels. While not strictly the same as wireless network
propagation, the approach is relevant.

In addition to these works, there have been several recent
publications by Riihij̈arvi et al. that discuss the use of spatial
statistics to model radio propagation [19], [5]. Like [4], this
work presumes a sampling on a regular rectangular grid.
Measurements are used to fit a semivariogram and several
underlying functions are investigated. In [20], the authors
suggest how this method can be used to more compactly store
radio environment maps and in [21] the authors investigate
how the placement of transmitters, terrain roughness, and
assumed path loss effects the efficacy of the interpolated
field. In this paper, we build upon the foundational work of
Riihij ärvi and Konak by making an empirical evaluation of
these geostatistical techniques, applying them to the general
case of coverage mapping, and evaluating them in a realistic
environment.

III. M ETHOD

If we assume that there is a random field that we are
modeling calledZ, then the value of that field at a point in
spacex is Z(x). The field can be defined in any dimension,
but typically we would assume thatx ∈ R

n with n = 2 or
n = 3. We can then define the value at any point as the field
mean (µ) plus some error (ǫ(x)):

Z(x) = µ+ ǫ(x) (1)

This model, which is used in Ordinary Kriging (OK),
assumes a constant (stationary) mean in space. Generalizations
that drop this assumption allow for nonlinear constructions and
are generally termed Universal Kriging (UK), but are likely
overpowered for this application. As we will show below, OK
methods are sufficiently powerful if care is taken to remove
trend (bias) from the process prior to modeling.

A. The Variogram

Central to geostatistics is the variogram, a function that
models the variance between two points in space as a function
of the distance between them (h). In the case of grid-sampled
fields, the distance between measurements is a fixed lag dis-
tance. Randomized and optimized sampling schemes produce
variable lag distances. The theoretical variogram is typically
written as:

γ(h) =
1

2
E[(Z(x+ h)− Z(x))2] (2)

If we know that the field is second order stationary (i.e., a
measurement at the same point will not vary with time, and
thedifferencebetween two measurements is also constant with
time), then the covariance function (correllelogram) is defined
as:

C(h) = E[(Z(x)− µ)(Z(x+ h)− µ)] = C(0)− γ(h) (3)

The assumption of second order stationarity may not be
safe for many radio environments, especially those operating
at low frequencies. Extending our work here to incorporate
nonstationary models is an exciting area for future work that
is outside of the scope at present.

If we have some set of measurements, we can define an
empirical variogram:

γ′(hi) =
1

2n

n
∑

j=1

(Z(xj + hi)− Z(xj))
2 (4)

A typical problem is to fit a variogram model (or correllel-
ogram) to an empirical variogram curve, given some number
of measurements. There are a number of models that can be
used for fitting. One example is the exponential model:

γexp(h) = τ2 + σ2(1− e−h/φ) (5)

In this equation,τ2 is known as the nugget variance and
is used to model discontinuity around the origin. In radio,



this would correspond to the intrinsic variation (small scale
fading) of the channel.σ2 is known as the sill because it sets
the maximum value (variance) of the semivariogram. Larger
values ofσ will increase the level at which the curve flattens
out. Finally, the parameterφ acts as a scale and affects the
overall shape of the curve. The value ofφ determines the
rate at which variance is expected to appear as a function of
distance (lag) between points. There are a number of other
models, such as the Gaussian, Cauchy, and Matérn models,
which may or may not be the best fit depending on the data2.
As we will see for the networks and metrics we study here,
the classical Gaussian and Cubic models perform well. In
this work we perform variogram fitting using the weighted
least squares (WLS) method described in [23], using the
implementation available in the R package “geoR” [24]. In
our implementation, variogram fitting is automated by fitting
multiple functions and parameter combinations and choosing
the best fit via cross validation. Although computationally
intense, this fitting process can be trivially parallelizedso that
it can be accomplished quickly. For instance, by computing
and cross-validating fits in parallel. Data-parallelism can also
be acheived by fitting measurements from each transmitter
separately, in parallel.

B. Kriging

OK is an interpolation technique that predicts the unknown
value at a new location (Z(x′)) from the weighted known
values at neighboring locations (xi):

ZK(x′) =

n
∑

i=0

wiZ(xi) (6)

To determine the optimal weights (w), we must minimize the
estimation varianceσ2

E :

σ2

E = E[(Zk(x
′)− Z(x′)2] (7)

where

σ2

E = −γ(x′−x
′)−

n
∑

i=1

n
∑

j=1

wiwjγ(xi−xj)+2

n
∑

i=1

wiγ(xi−x
′)

(8)
which leads to the system of equations:
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2[22] provides an excellent survey of these models.

whereµ is called the Lagrange parameter. This interpolation
is “exact”, meaning thatZK(x′) = Z(x) if x = x

′. This
approach can be used for mapping by Kriging the value at
each pixel position. In this application, the system in equation
9 is solved for each unknown pixel value (x

′). This constitutes
a substantial amount of work, but is trivially parallelizeable
(e.g., by performing each pixel calculation simultaneously).

The quality of an interpolated field depends on the goodness
of the fitted variogram (γ). In addition to this, there are
a number of different ways to adapt Kriging to a specific
data set. Anisotropic corrections are of particular interest
for coverage mapping. This approach assumes that the field
may require different statistics (i.e., a different variogram and
possibly fitting method) in different directions from some
point. There is also an entire branch of statistics dealing with
multivariate analysis (co-Kriging).

C. Detrending

In [22], Olea et al describe the importance of removing
any sources of nonlinear trend from measurements so that
the fitted (interpolated) field complies with the basic tenets
of geostatistics. To this end, we introduce a hybrid approach
where a predictive (empirical) model is used to calculate the
predicted path loss value at each measurement point. This
approach differs from the direct fitting method suggested by
Riihij ärvi and Konak. In our method, the model prediction is
subtracted from the observed value to obtain the residual, or
error:

Z ′(x) = Z(x)− P (x) (10)

whereZ ′() is the residual (de-trended measurements) process,
Z() is the observed process andP () is the model predic-
tion. This approach to detrending is entirely modular and
extensible—P () can be replaced with any predictive model.
In this way, the geostatistical interpolation can be viewed
as a careful way to correct for any remaining (environment
specific) model error, instead of as a complete replacement.
And, as the state of the art in path loss modeling is advanced
further, and models are able to make predictions closer to
measurements, this improvement can be carried through to
measurement-based interpolation in the process of de-trending
as described here.

In our work here, we detrend signal strength measurements
with a fitted model for path loss from [1]. First, we convert
the measurements from signal power/ratio (i.e., Carrier to
Interference and Noise Ratio (CINR)), to path loss. This
requires some basic knowledge about the transmitter: transmit
power (Ptx in dBm), antenna gain in the direction of the
receiver (Gtx(θ) in dB), and an assumed constant noise floor
value (N in dBm, set to -95 here).

Zpl(x) = (Ptx +Gtx(θ))−N − Zcinr(x) (11)

If this information is not known, approximate values can
be substituted which will be corrected automatically in the



fitting process, and should have no discernable ill-effect on
the accuracy of the interpolation.

Using the observations from each transmitter, we fit the pa-
rametersα (path loss exponent) andǫ (offset) in the following
equation:

P (x) = α10log10(d) + 20log10(f) + 32.45 + ǫ (12)

where d is the distance from the pointx to the transmitter
in km and f is the frequency of the transmission in MHz.
Subtracting the fitted value ofP () for from each measurement
gives the de-trended observations (Z ′(x)), which can then be
used to fit an empirical variogram model.

D. Summary of Complete Method

In summary, the complete mapping process is as follows:
We begin by determining the extent of the area of interest,
and defining a bounding box for measurements (and predic-
tion). Following the best practices for geostatistical sampling
described in section II-A, a uniform (equilateral triangular)
sample grid is generated and used for the initial sampling.
Some small number of pilot measurements may be necessary
to determine an appropriate lag distance (sampling density)
for this grid.

Next, measurements are taken at the grid points. At a subset
of grid locations, random clustered measurements are also
taken within 40 wavelengths (4.8 m) of the original point.
When the resulting data from the initial sample is available,
it must be inspected for sources of systematic bias and
measurement error. Sources of measurement error may differ
from campaign to campaign, but are generally systematic (i.e.,
equipment or procedural error) or spatial (i.e., sources oferror
or interference stemming from the position of the measurement
apparatus relative to its surroundings). When bias is suspected
in the measurements, these issues must be approached on a
case-by-case basis.

Next, using the method described in section III-C, we
detrend the measurements. The detrended measurements are
then used to generate an empirical variogram, and theoretical
variogram fit as described in section III-A. Using the vari-
ogram and measurements, a WLS OK method can be used to
interpolate the values at each pixel location. We recommend
0.2 pixels per meter for high resolution maps, and 0.05 pixels
per meter for low resolution (prototyping) maps.

The OK process produces a map with an interpolated
value and error (Kriging variance) at each pixel location.
This step requires substantial computation (especially athigh
resolutions). Optionally, second-phase samples can be taken
to fine tune the model and reduce residual error further. After
each round of additional sampling, the variogram fitting and
Kriging steps must be repeated. Finally, the trend is added
back to pixel values to produce a final raster image.

IV. CASE STUDY: WIMAX

In this section, we describe a case study conducted specif-
ically for the purpose of evaluating the efficacy of Kriging-
based coverage mapping. Our aim here is to map the coverage

Name Dir. Freq. Longitude Latitude AGL (m)
cuGW 235 2530 -105.267778 40.008056 46
cuGE 90 2520 -105.267778 40.008056 46
cuEE 120 2530 -105.263056 40.007222 34
cuEW 240 2510 -105.263333 40.007222 34
cuEN 0 2578 -105.263333 40.007222 34

TABLE I
SPECIFICATIONS OF FOURUNIVERSITY OF COLORADO WIMAX BSS.

Fig. 2. Map of University of Colorado and 100m uniform equilateral
triangular sample. Measurements are limited to the main campus, which is
outlined in red.

of five WiMax base-stations deployed on the University of
Colorado at Boulder campus operating at 2.5 GHz within an
educational spectrum license held by the University. Although
this study seeks to map the coverage of this network, the
problem is analogous to passively mapping the coverage
of a Primary User (PU) or an interfering (possibly rogue)
transmitter.

To determine an appropriate sampling density, we proto-
typed our methods on publicly available data, collected from
a municipal wireless network in Portland, Oregon operatingat
a similar frequency (2.4 GHz) [25]. Based on this pilot study
we chose to perform an initial sample on a uniform equilateral
triangular lattice, following the recommendation of [10],with
a lag of 100 m. To constrain the data collection, we confine
measurements to the main University of Colorado campus.
Figure 2 shows the main campus along with points at which
we aimed to collect samples. The shape of the University is
vaguely triangular, with the longest side measuring 1.5 km and
the shorter side measuring 1.1 km, giving a total measurement
area of slightly more than825m2.

Of the five WiMax Base Station (BS)s being studied, four
are managed by the University of Colorado Office of Infor-
mation and Technology (OIT) and primarily provide backhaul
coverage to buses in and around Boulder. The fifth is a Global
Environment for Networking Innovation (GENI) testbed node



Fig. 3. Diagram of WiMax measurement cart.

meant for research purposes [26]. Table I provides details
about the location and configuration of each BS3. All nodes
use a channel bandwidth of 10 MHz, have 90-degree sector
antenna (excepting the GENI node which has a 120 degree
sector), and operate at a nominal transmit power of 40 dBm.
Two BSs are deployed on the Gamow Physics Tower (pointing
east (cuGE) and west (cuGW)) and three on the Engineering
Center tower (pointing north (cuEN), east (cuEE), and west
(cuEW)).

A. Measurement Apparatus and Procedure

In order to make measurements in arbitrary locations, which
might not be accessible with a large vehicle, we constructeda
measurement apparatus of our own design, built into a small
cart. The cart provides a stable platform on two wheels and
can be connected to a bicycle or used as a hand-cart. Figure
3 shows the design and layout of the measurement cart. To
collect measurements, we make use of an Anritsu MS2721B
portable spectrum analyzer. This analyzer is unique in that
it is both battery-powered and portable, as well as having
the ability to demodulate WiMax transmissions and record
protocol-specific quality metrics. To control the spectrum
analyzer, we use the Virtual Instrument Software Architecture
(VISA) National Instruments (NI) interface. A small netbook
laptop running Ubuntu Linux is connected to the spectrum
analyzer with a single Category 5 (CAT5) crossover cable.
This laptop controls the spectrum analyzer using a series of
VISA commands, which allows for measurement scripting on
the laptop. Two Global Positioning System (GPS) devices
are used to record position, one connected to the spectrum
analyzer and one a hand-held Garmin GPS60 device4. The
measurement antenna for the spectrum analyzer is raised 2
m from the ground using a piece of schedule-40 Polyvinyl
Chloride (PVC) (non-conductive) pipe, and attached with
plastic cable ties. Although the cart itself is conducting,care is

3Unless otherwise specified, all latitude and longitude coordinates are given
in WGS84/EPSG:4326 and UTM coordinates in EPSG:32160.

4We chose to use a hand-held GPS device after finding the Anritsu’s GPS
support to be very unreliable.

made to ensure that no metallic objects are in close proximity
to the elevated measurement antenna.

We chose to focus our measurement effort on four important
first order metrics of channel performance that can be collected
passively: CINR, Relative Constellation Error (RCE), Error
Vector Magnitude (EVM), and subcarrier spectrum flatness.
CINR provides a measurement of pure received power above
noise, calculated from a clean carrier wave transmitted in
the preamble of the WiMax frames. RCE and EVM quantify
the amount of error in a binary or quaternary constellation
plot, which provides a tight estimate of physical-layer error.
Finally, subcarrier spectrum flatness is the amount of gain
or attenuation on each of 52 (or more) subcarriers within
the bandwidth relative to the mean signal strength. Using the
spectrum flatness data, we are able to calculate Effective Signal
to Noise Ratio (ESNR), the metric shown in [27] to be a
strong predictor of actual network performance (as compared
to the more traditional metrics such as Signal to Noise Ratio
(SNR) and RSS). We verified this result for WiMax networks
by performing upstream and downstream throughput tests to
the Access Service Network (ASN) gateway at a random
(spatial) sample of points—both ESNR and CINR appear to
be reasonable physical layer predictors of application layer
performance. ESNR can be thought of the average SNR
required to produce the error process seen on each individual
subcarrier. In this paper we use the label “ESNR6” to refer
to the ESNR metric using the modulation used at 6 Mbps
(i.e., QPSK), and “ESNR54” for the ESNR metric using
the 54 Mbps modulation (i.e., QAM). Although we have
used sensitive measurement equipment to ensure accuracy in
this study, recent work using commodity devices (e.g., [28],
[29]), suggest that future systems may be largely implemented
with inexpensive and easily obtainable hardware, which may
already be available in some end-user mobile devices.

Before we begin measurement, we must define a policy for
locating and measuring at sample sites. After some experimen-
tation with direct location using a GPS device, we settled on
a simple solution involving a printed map similar to the map
in figure 2. We visit each site without any particular order.
In the event that it is impossible to make a measurement at
the site, either because it falls in an inaccessible (i.e., fenced)
area or within a building, we instead measure the closest point
(by straight line distance) that is accessible. Although there
is some random error associated with locating points (due to
GPS accuracy, point finding, and obstacles), we claim that this
error is not harmfully aligned with any environmental feature
and instead amounts to random jitter about the uniformly
selected sample sites (which some spatial sampling studies
have actually purposely advocated).

At each measurement location, a wireless keyboard5 is used
to manage the control computer (which keeps the experimenter
away from the apparatus, preventing them from interfering
with the measurements themselves) and the control computer

5The keyboard operates in the 2.4 GHz spectrum, and hence will not
interfere with our measurements around 2.5 GHz.



provides feedback through an amplified speaker utilizing text-
to-speech synthesis software. At each point, three repeated
measurements are made of downstream system performance
using the various metrics. At a subset of points, additional
clustered measurements were taken within a 40 wavelength
(≈ 4.8 m) radius of each true point. The combination of
repeating measurements in time and space, allows for accurate
estimation and averaging of intrinsic channel variabilitydue
to small scale fading effects and instrument error.

The device first picks a given channel (carrier frequency)
and then records all metrics for each measurement in turn.
Then it switches to a different channel and repeats. While the
device is performing measurements, the experimenter uses the
handheld GPS device to record the current position, sample
location (each sample site is assigned a unique identifier),and
GPS accuracy. At the end of a measurement effort (typically
when the analyzer’s battery is flat), the cart is returned to
the laboratory for charging and data offload. The spectrum
analyzer stores measurements in a proprietary, but plain/text,
format that can be easily parsed.

B. Possible Sources of Systematic Sampling Error

During our measurement campaign, three individuals used
the cart to make measurements. Although all three measurers
were collecting measurements using the same procedure, one
possible source of systematic error is from the measurers
themselves. No significant correlation is present in terms of
location error or measurement variation and hence we do
not correct for this bias in subsequent analysis. It is worth
noting that some measurements are distant from their intended
location. This occurs (as discussed above), when a point is
unreachable. So long as the new measurement point is as
close to the original measurement location as possible and
there is no systematic error or systematic terrain alignment,
these deviations should not effect the quality of the sample.
We also investigated the relationship between GPS accuracy
and channel variation, hypothesizing that GPS accuracy might
be weaker in complex environments where signal is also
degraded, but no discernible correlation was present.

C. Correlation Between Metrics

In this measurement campaign, we collected several per-
formance metrics besides the classic signal strength or SNR-
equivalent metrics. One question that naturally arises is:are
these more robust metrics trivially correlated with simple
and easy to collect metrics such as CINR. Figure 4 plots
the relationship between CINR and each of the other met-
rics studied. RCE and EVM appear to be a simple (but
nonlinear) function of CINR, at least as calculated by the
spectrum analyzer used in this study. There are several ways
that EVM can be calculated from the constellation plot and
observed power of constellation points. It appears that the
Anritsu spectrum analyzer is calculating EVM from CINR or
vice versa. RCE is calculated directly from the EVM value
and hence is equivalent. Given this, RCE and EVM do not
appear to provide novel information above and beyond what
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Fig. 4. Correlation between metrics and CINR.

is provided by the CINR measurement. It is worth noting
that in the process of data collection, we have recorded a
complete constellation plot for each measurement so we could
also calculate RCE ourselves. The relationship between ESNR
and CINR is less trivial, especially for the lower (Phase Shift
Keying (PSK) modulation based) bitrates. The higher bitrates,
which use Quadrature Amplitude Modulation (QAM), tend
to have a fairly well defined linear correlation with CINR.
A least squares fit of ESNR54 to CINR is very good with
adjustedR2 of 0.90 and mean residual error of 1.01 (as
compared with 0.29R2 and 8 dB residual error for ESNR6).
This suggests that in cases where information about spectrum
flatness is unavailable, ESNR54 can be roughly approximated
using CINR measurements.

D. Spatial Data Characterization and Variogram Fitting

Figure 6 shows CINR measurements taken for the “cuEN”
BS. By plotting the measurements in this way, we can identify
any sources of skew and bias in the measurements, as well
as understand their distributional spread and variance prior
to geostatistical modeling. All four metrics produce a similar
spatial distribution of values with large path loss or error
values to the southwest and smaller (better) values to the
north. All metrics have different value distributions, butthe
ESNR54 and and CINR metrics appear to share the same basic
skewed lognormal shape. Figure 5 shows the fitted relationship
between path loss and distance for the three SNR-like metrics.
The fits are poor, but appear to at least account for some basic
trend, which we can remove to improve the efficacy of the
Kriging process. At locations where we attempt, but fail, to
make a measurement, we use a noise-floor value. We call these
“null measurements”. For the SNR-like metrics, we use 1.0
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Fig. 5. De-trending fits for the CU WiMax cuEN (GENI) node. Only the metrics that can be converted to path loss and de-trended(i.e., SNR and equivalents)
are shown.
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Fig. 6. Measurement spatial structure for CU WiMax cuEN (GENI) CINR
measurements.

and for EVM, we use 100 (i.e., 100% probability of error) as
the null measurement value.

After detrending and accounting for null measurements, we
can proceed with variogram fitting. Figure 7, shows the fitted
variograms for cuEN. The fits are truncated at 1 km here, since
this is approximately the diameter of the measurement region,
and measurements further apart than that are unlikely (or
erroneous). Because we have attempted to model the nugget
variance explicitly with clustered measurements, we can set
the nugget tolerance to zero6. The fitted variogram parameters
are summarized in table II.

6Nugget tolerance is the distance within which measurements are consid-
ered to be effectively colocated.

In this data set, the best fits are generally truncated, but
without inclusion of null measurements. This differs from our
pilot study with the data at [25], but makes sense given that the
sampling has been carried out in a consistent way here, which
perhaps is able to model the decay of the signal towards the
noise floor without including “implicit” measurements. The
best fits are split fairly evenly between Gaussian and cubic
models, with a slight preference for Gaussian.

The goodness of these nonlinear fits is determined via
experimental cross validation. We randomly exclude 20% of
points, and use the remaining points to predict the value of
each excluded point. This results in root mean square error
(RMSE) and mean square-root of kriging variance (MSKV,
i.e., model standard error) reported the table. We can see
that the quality of fit is clearly correlated with the metric
used—CINR fits much more cleanly than the ESNR metrics.
The CINR fits result in a residual standard error of 2-4 dB
depending on the AP being modeled, which is quite good by
the standard ofa priori models [1]. The worst fits, for the
ESNR metrics, produce 9-10 dB residual error, which is on
the same scale asdata-fittedpath loss models. To highlight
this improvement, a final column in this table provides the
gain acheived in terms of dB RMSE over a simple data-fitting
method. Why the ESNR metrics appear to be more difficult to
fit is an open question. However, it may be due to the fact that
ENSR involves discrete steps (and more degrees of freedom)
whereas CINR is a single continuous variable. In addition to
standard error, we have also calculated the gain (reduction
in error) versus an explicit log/log fit to the measurements.
We can see that the geostatistical fitting method produces a
modest reduction in residual error for all metrics and all BSs.
Although the gain over an explicit log/log fit is small, this is
encouraging since the geostatistical model has more degrees
of freedom and includes knowledge of spatial structure.

E. Mapping with Ordinary Kriging

Mapping proceeds by Kriging each pixel in the prediction
region and then creating a color map by interpolating the



BS Metric Model φ τ2 σ2 N Trunc/Neg Mean K-Var Mean RMSE Gain
cuEW EVM gaussian 697.13 199.12 351.34 150 FALSE/FALSE 15.00 16.05 N/A
cuEW CINR cubic 1839.69 3.99 19.38 150 FALSE/FALSE 2.16 2.75 17.54

cuEE/cuGW ESNR54 cubic 2183.29 115.19 81.75 147 TRUE/FALSE 11.09 9.27 5.88
cuEE/cuGW ESNR6 cubic 1253.62 91.27 45.66 147 FALSE/FALSE 9.95 9.50 2.68
cuEE/cuGW EVM cubic 771.36 259.17 396.46 147 TRUE/FALSE 17.68 15.91 N/A
cuEE/cuGW CINR gaussian 541.94 8.48 9.30 147 TRUE/FALSE 3.04 2.87 12.65

cuGE ESNR54 gaussian 2340.33 34.11 437.08 182 TRUE/FALSE 5.93 6.91 7.15
cuGE ESNR6 gaussian 380.27 49.67 39.18 182 TRUE/FALSE 7.34 7.48 2.99
cuGE EVM gaussian 310.67 138.75 321.18 182 TRUE/FALSE 12.67 12.25 N/A
cuGE CINR cubic 1711.76 6.39 12.31 182 FALSE/FALSE 2.61 2.03 9.80
cuEN ESNR54 cubic 1530.11 72.81 108.83 146 TRUE/FALSE 9.00 9.83 7.97
cuEN ESNR6 gaussian 746.71 118.74 76.04 146 TRUE/FALSE 11.22 11.21 2.67
cuEN EVM cubic 751.21 444.98 357.14 146 FALSE/FALSE 22.84 21.11 N/A
cuEN CINR cubic 1304.05 14.22 20.04 146 TRUE/FALSE 4.00 4.09 12.80

TABLE II
BEST FIT STATISTICS FOR VARIOGRAM FITTING OFCU WIMAX BSS.
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Fig. 7. Empirical variogram and fits of four metrics for CU WiMaxcuEN
(GENI) node.

kriged value on a color gradient. This color mapping scheme
was adapted from medical imaging [30] and appears to work
well for visualizing the radio environment. Figure 8 shows the
final maps for the cuGE node, which features an interesting
final propagation pattern. This BS is a 90-degree sector point-
ing east, and as a result the propagation seems to favor that
direction, however, there are clear and significant shadowsto
the west and north.

As a final metric of performance for these maps, each
map is compared to a random sample of measurements taken
around campus to see how well the maps are able to predict
points in betweenthe sample grid. For this experiment, 100
random sample locations were chosen and tested sequentially.
Measurements were only made of the cuEN node for this test.

(a) CINR, Excess (b) CINR, Map

(c) ESNR6, Excess (d) ESNR6, Map

(e) ESNR54, Excess (f) ESNR54, Map

Fig. 8. Maps for cuGE node. The left maps show the excess (residual after
trend is removed). The center maps show the re-trended signal map. The right
maps show the residual kriging variance of the other maps.

When comparing those measurements to the predictions for
the cuEN node, using the CINR metric alone, there is a Root
Mean Square Error (RMSE) of 4.71, slightly higher than that
found with cross validation, but still quite good overall.

F. Combining and Visualization

For coverage mapping, per-AP fitting is likely the best
method, but in cognitive radio and interference detection
applications it is necessary to create a composite map using
data from many transmitters. This can be accomplished either
by fitting and Kriging the entire set of measurements together



or by fitting and Kriging measurements from each transmit-
ter separately and then combining the resulting maps. The
first approach is the most conceptually straight forward, but
has some problems. Combining measurements from multiple
transmitters may produce a map with a large amount of per-
location variation, possibly with colocated points of drastically
varying value. Exactly colocated measurements of differing
value can produce unsolvable Kriging equations and must be
“jittered” to create a solvable equation with a unique solution.
In the end, this approach can result in a map that is difficult
to interpret and has a large error margin.

Due to the large variance at the same point due to different
transmitters, the resulting map takes the form of a nearly
constant value with peaks or holes centered at measurement
locations. As a result, these data-combined maps do not
provide information about the predicted coverage between
points and are generally no more useful than simple color-
coded dots located on a map. Given these concerns about
this data combining method, we advocate anex post facto
combining which we will describe next.

Ex post factomap combining involves basic geospatial
image tiling and combination. We use a basic two-pass method
that first reads in all the map files to determine the total
extent of the image, and then overlays the images, combining
values at pixels as necessary. There are many ways we can
combine maps this way, the most obvious is to take the
maximum value for SNR-like metrics or the minimum value
for EVM-like metrics. Figure 9 provides the combined maps
for the CU WiMax measurements using these two combining
methods. In the threshold-based combining, we count the
number of transmitters whose interpolated signal is above 40
dB CINR7(or below 60% in the case of the EVM metrics) and
use this count (from 0 to 4) for the map. For the maximum-
based combining, we actually use the minimum for the EVM
metric, since a small value is good in this case. In a cognitive
radio application, a threshold-based map like this could be
used to locate contiguous regions where it is safe to transmit.

These maps make light of a few interesting observations.
Firstly, the threshold maps make it plain to see regions and the
contours between them where there is no coverage above the
given threshold (light red) or substantial overlap (light green).
Since two transmitters actually share the same frequency in
this network, regions of light green might actually indicate
potential for interference at the receiver. The maximum com-
bining approach is less easy to interpret, but gives a complete
picture of the propagation environment on the CU campus. For
all metrics, there appears to be a coverage “hole” just west of
the Gamow tower, located in the center of the map, which may
indicate a misconfiguration in the downtilt of the west-pointing
antennas for a building of this height (i.e., more downtilt might
be necessary to avoid this hole). Additionally, the west-facing
transmitters on the other tower, may fail to cover this region
since the Gamow tower creates a shadow. Despite the seeming

7This threshold was empirically derived using a random (spatial) sample
of upstream and downstream throughput measurements.

(a) CINR, Map (b) CINR

(c) ESNR6, Map (d) ESNR6

(e) ESNR54, Map (f) ESNR54

Fig. 9. Kriged maps for combined CU WiMax measurements using the
CINR metric.

congruity of the maximum combined maps, the threshold maps
reveal fairly disparate contours.

G. Small Scale Effects and Nonstationarity

In this section we want to understand how measurements
vary over small time scales and small distances. An under-
lying assumption of the Kriging process is that the process
being modeled is stationary, meaning that the (fitted)meanis
constant in both time and space. Clearly, this is a strong as-
sumption that the (often chaotic) radio environment is unlikely
to obey. It is possible to loosen the stationarity assumption
at the cost of substantial additional computational work, but
in practice most users of Kriging processes opt to accept
the implications of this assumption. By understanding how
the radio environment changes over small time scales and
small distances, we can put a bound on repeated measurement
variation and hence a bound on the implicit unavoidable error
associated with the stationarity assumption.

Fading in the radio environment can be classified into
small-scale and large-scale fades. Large scale fades should
be fairly constant over small distances and time, and hence
are not troublesome—it is exactly the environment-specific
large scale fading effects that our approach models. However,
small-scale fades can be highly varying in time and over
small distances because they stem from multipath effects and
(possibly mobile) scatterers. As a practical rule of thumb many
experimenters average measurements within 40 wavelengths
(≈ 4.8 m) as a way to “average out” small scale effects [31].
In this section we seek to validate that standard practice as
well as understand the scale of small scale effects over short
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time scales.
After the initial University of Colorado at Boulder (CU)

WiMax measurement campaign, a second campaign was un-
dertaken to collect data at clustered locations so that the small
scale (in space and time) variation can be compared to large
scale trends. To this end, a random subset of approximately
15 grid points were selected and at each point, three complete
measurements were taken at random locations within 40 wave-
lengths (≈ 4.8 m) of the original grid point. Figure 10 shows
the amount of measurement spread observed at these closely
clustered locations versus the amount of measurement spread
between repeated measurements at the same location. Here,
we use the nonparametric Median Absolute Deviation (MAD)
as a measure of spread, although simple range (difference
between largest and smallest observation) behaves similarly.
Although the two distributions are not identical, they do appear
to be Gaussian, with a similar central tendency and spread.
Indeed, we have compared these distributions with a Welch
two-sample t-test, two-sample Kolmogorov-Smirnov test, and
Wilcoxan rank sum test (all of which test the null hypothesis
that the difference in central tendency is significant), andnone
of the tests are willing to reject the null hypothesis that the data
are drawn from the same distribution (p-values are between 0.3
and 0.5).

As an alternative view of this intrinsic channel variability,
we look at the amount of variation observed between repeated
measurements taken at the same location as a function of time.
The amount of variation appears to be fairly stable for all of
the metrics over small time scales (several minutes). There
is a slight increase in measurement spread observed for the
RCE and EVM measurements, but this does not appear to be
substantial, and may not be significant. Interestingly, theESNR
metrics appear to have more intrinsic variation than the simpler

Sampling
Initial Sampling Design 100m Triangular Lattice with random

clustered samples
within 40 wavelengths (≈ 4.8 m)

Second Phase Sampling None. A topic forfuture work.
Unreachable Points Take measurement at nearest

accessible location
Repeated Measurements1-3 per (regular or cluster) location to

model small scale temporal variation
Postprocessing

Null Measurements Include with constant minimum value
Detrending Subtract off Log/Log fit

The Variogram
Variogram Fitting Weighted Least Squares
Variogram Model Gaussian or Cubic
Variogram Truncation Necessary. 1000m performs well here.

Interpolation (Kriging)
Method Ordinary Kriging
Anisotropic Modeling None. A topic forfuture work.
Nugget Tolerance 0
Prediction Resolution 0.05 (low) - 0.2 (high)

TABLE III
SUMMARY OF DERIVED BEST PRACTICES FOR GEOSTATISTICAL MAPPING

OF WIRELESS NETWORK COVERAGE.

metrics which may be due to the fact that these metrics take
into account more degrees of freedom (i.e., independent fading
on each subcarrier).

Although it is likely that the radio environment is nonsta-
tionary at large time scales (days, weeks, and years), from
these results it appears that the intrinsic variation is fairly
stable on small time scales and hence repeated measurements
are likely sufficient to characterize intrinsic variability. Be-
cause the geostatistical method explicitly models, ratherthan
ignores, this intrinsic error, it can be treated as a featureof the
resulting model instead of noise to be smoothed away. And,
perhaps more importantly, by modeling the extent of small
scale fading, we can put a lower bound on the achievable
accuracy ofany mapping campaign in a given environment,
which helps quantify the obtainable fidelity of our model and
also determine when sufficient measurements have been made.

V. CONCLUSION

In this paper, we have provided the first complete, real-
world application of geostatistical modeling and interpolation
to the problem of radio environment mapping. Although some
other authors have proposed that geostatistical techniques may
be appropriate for the domain, the work here is the first to
actually apply the concepts and adapt them as necessary for
the mapping of real transmitters. To analyze their efficacy,
we have applied these techniques to the task of mapping the
coverage and performance of a WiMax network in Boulder,
Colorado. Table III provides a summary of the best prac-
tices derived from this investigation. Additionally, we have
shown that this robust coverage map can be produced using
a reasonably small amount of easily obtained data (several
hundred samples on a hundred meter grid, for a space the size
of a large university campus), which amounts to a tractable
amount of routine “spade work” (approximately three days



work for a single dedicated experimenter). Automating this
data collection will be an important step for the scalability
of this approach, and we believe that there is much promise
in research related to crowd-sourced data collection and in
expensive commodity measurement devices. In forthcoming
work, we have investigated the practicality of this approach as
applied to large service areas, using less careful measurements
(i.e., drive-test or crowd-sourced). Those results appearto
suggest that geostatistical coverage mapping can be applied
effectively and scaled naturally in those domains as well.

In general we see an error reduction of more than 10
dBs over common measurement-based methods and data-
tuneda priori models when mapping CINR, and several dBs
improvement with ESNR-based metrics. However, to focus
only on the performance improvement is to miss the real
value of the Kriging method. By implementing an appropriate
sampling design, modeling the underlying spatial structure of
the data, and using a statistical method we are able to generate
an interpolated map with a well defined notion of residual
error: the prediction at each point is a distribution, not simply
a value. We investigated the scale of small scale fading (and
hence deviation from stationarity) in the observations, and
developed a method for combining observations from multiple
BS measurement campaigns into one complete REM.

In future work, we will attempt to refine the models with
additional “secondary” measurements that have been chosen
to optimally reduce the residual error of the model. We have
also begun to apply these methods to networks using different
technologies and at different operating frequencies (2.4 GHz
WiFi and 700 MHz LTE) with encouraging results. There are
still important questions in terms of how measurement-based
radio environment mapping can be automated and how models
can be stored and queried efficiently. We offer the current
work as a first attempt to demonstrate the core geostatistical
techniques can be effectively and pragmatically applied inthis
domain and encourage researchers and commercial network
operators to consider these powerful and statistically rigorous
methods as a promising approach to the problem of empirical
radio environment mapping.
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