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A B S T R A C T   

This article describes an interdisciplinary methodology to calculate the probability of failure for bearing axial 
cracking, the dominant failure mode in the intermediate and high-speed stages of many wind turbine gearboxes. 
This approach is mainly a physics-domain method with needed inputs from the data domain. The gearbox and 
bearing design along with operations data and component failure records from a wind power plant provide the 
input to physics-based models and define axial cracking damage metrics. The physics-domain models predict the 
bearing loads and sliding velocities, which are the essential elements for quantifying the accumulated frictional 
energy. Both accumulated frictional energy and electrical energy generation are proposed as damage metrics for 
bearing axial cracking. A first-order reliability method is then used to compare the proposed damage metrics to 
failure threshold functions and calculate the probability of failure of each individual bearing. Although the 
probability of failure for the failed turbines is not separated from the population, a feature engineering analysis 
shows the potential of frictional energy as a damage metric when combined with roller loads, bearing sliding 
speed, lubricant type, and terrain features. Through statistical analysis of historical data, the proposed meth-
odology enables reliability assessment of axial cracking in individual wind turbine bearings and connects the 
reliability forecast with turbine design and operations.   

1. Introduction 

Wind power plant operation and maintenance (O&M) costs can be as 
high as 30% of the life-cycle cost of a typical offshore wind plant, and 
about half of that for a typical land-based wind plant [1]. Premature 
failures of wind turbine drivetrain components remain an important 
contributor to higher-than-expected O&M costs of wind power plants 
[2]. An accurate reliability forecast provides crucial information for 
reducing O&M costs through design improvements, optimized operation 
strategies, and enhanced budgeting. 

The current research focuses on reliability modeling and prognosis 
by examining bearing axial cracking, which is the dominant failure 
mode observed in the high- and intermediate-speed-stage bearings in 
many wind turbine gearboxes [3]. “Axial” describes the orientation of 
these cracks, as they align with the axis of the shaft rotation. These 
cracks typically have white etching areas, which are also referred as 
white etching cracks (WECs). “White etching” refers to the appearance 
of the steel microstructure when the cracked bearing cross sections are 
polished, etched with chemicals, and examined under reflected light [4]. 

These cracks tend to propagate to spalls or lead to a complete splitting of 
the bearing inner ring. This mode of failure can occur at 5%–20% of the 
predicted design life based on rolling contact fatigue and has been 
observed in many industries, bearing locations, bearing types, bearing 
parts, and steel types [5,6]. Although WECs have been reported for over 
a decade, the conditions leading to axial cracking or WECs, the process 
by which this failure culminates, and the reasons for their apparent 
prevalence in wind turbine gearboxes, are all highly debated. In 2014, 
benchtop testing conducted at Argonne National Laboratory reproduced 
WECs on a three-ring-on-roller test rig under highly loaded sliding 
conditions [7]. A cumulative frictional-energy metric was derived from 
the benchtop testing results [8] for identifying the occurrence of axial 
cracking. Based on this damage metric, the presented research aims to 
introduce and demonstrate a reliability assessment methodology for 
axial cracking. 

Component reliability is typically assessed by fitting the component 
age at the time of failure with a mathematical distribution, such as 
Weibull. This data-domain method provides a quantitative approach to 
compare various designs, manufacturers, operations, and maintenance 
[9]. It has been successfully applied in military, civil, and many other 
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applications [10] and received attention in the wind industry, especially 
for plant or fleetwide reliability analysis [11]. However, these reliability 
analyses are conducted at the wind plant or fleet levels, and they do not 
provide much information on individual turbines and their 
subcomponents. 

During wind plant operations, a large amount of turbine supervisory 
control and data acquisition (SCADA), condition monitoring, and plant 
maintenance records are typically collected. Various modeling and 
analysis methods using the collected data have been explored for 
condition-based maintenance of major turbine components [12]. How-
ever, the focus has been on fault diagnostics but not prognostics. Prog-
nostic methods for wind are still being explored [13] and they can be 
grouped into physics-based, statistical, artificial intelligence, and hybrid 
approaches [14,15]. Statistical, artificial intelligence, and reliability 
engineering life data analysis can be broadly considered as data-driven 
approaches. These data-domain-reliability prediction methods are 
highly influenced by the availability of high-quality, informative turbine 
component reliability data. Most importantly, these approaches are not 
capable of connecting reliability estimates with component design pa-
rameters, operation strategies, and control objectives because of the lack 
of physical understanding of underlying failure mechanisms. In other 
words, methodologies for addressing reliability evaluation throughout a 
component’s life cycle, including its initial design phases and various 
operational conditions, are yet to be developed. 

In this work, a novel interdisciplinary methodology that uses infor-
mation from both the physics and data domains is developed for both 
reliability assessment and prognosis of wind turbine gearbox bearing 
axial cracking. The statistical characteristics of bearing damage and 
failure for a wind plant are assessed by analyzing the accumulated 
frictional energy of individual turbine bearings using historical SCADA 

data and failure records. Assuming the rest of the wind plant has the 
same frictional energy failure threshold as the failed turbines, reliability 
forecast of individual bearings at any operating age is estimated. 
Moreover, reliability forecast of wind turbine gearbox bearings inher-
ently considers the effects of bearing design and turbine operations 
because of the physical nature of this methodology, which can be used in 
early design phases to forecast and reduce O&M costs. 

This methodology includes a set of mathematical models together 
with operation data and component failure records to calculate proba-
bility of failure of gearbox bearings of individual wind turbines 
throughout the turbines entire life cycle. Bearing accumulated frictional 
energy and electrical power generation are considered as damage met-
rics for axial cracking in this study. The reliability assessment using 
accumulated frictional energy includes the following steps: 1) mapping 
turbine rotor loads to drivetrain loads, 2) calculating bearing roller 
sliding, 3) estimating the progression of bearing damage, and 4) 
assessing probability of failure considering uncertainties in modeling 
parameters and input signals. Similarly, reliability assessment of bearing 
axial cracking using electrical power generation includes: 1) calculating 
the accumulation of electrical power for individual turbines, 2) deter-
mining bearing degradation, and 3) assessing probability of failure. The 
input for these models comprises wind plant SCADA data, maintenance 
records, and basic drivetrain design parameters and dimensions. The 
bearing degradation is determined using the aforementioned metrics 
and the degradation threshold is calculated using the failure and 
maintenance records from wind power plants. Bearing degradation and 
probability of failure is evaluated for forty-nine MW-size wind turbines 
of a wind plant. With this methodology, many other damage metrics, 
failure modes, or drivetrain components can be easily examined. 

The rest of the article is organized as follows. Section 2 introduces 

Nomenclature 

T Main shaft torque (Nm) 
ωg Generator rotational speed (rpm) 
E Frictional energy (J) 
Ê Frictional energy (nondimensional) 
Ê⋆ Frictional energy threshold (nondimensional) 
G Limit state function 
Pf Probability of failure 
Th High-speed-shaft torque (Nm) 
ε Gearbox ratio 
ηg Transmission efficiency 
M Mass matrix (kg) 
C Damping matrix (Ns=m) 
K Stiffness matrix (N=m) 
mb Mass of the brake disc (kg) 
msh Mass of the shaft (kg) 
q Displacement vector (m) 
t Time (s) 
f External load (N) 
ξ Damping ratio 
ωn Natural frequency (Hz) 
U Mode shape matrix (m) 
N Number of bins 
μ Frictional coefficient 
Qij Normal force between inner raceway and roller j (N) 
ΔVij Sliding velocity (m=s) 
ωc Bearing cage rotational speed (rpm) 
ωrj Roller j rotational speed (rpm) 
B Bearing inner ring raceway diameter (mm) 
dm Bearing pitch diameter (mm) 

D Roller diameter (mm) 
Z Number of rollers 
L Roller length (mm) 
Cij Contact load factor 
bij Length of contact ellipse (mm) 
FR Bearing radial load (N) 
β Weibull shape parameter 
η Weibull scale parameter 
γ Weibull location parameter 
ΔPd Bearing clearance variation (mm) 
Γ Coefficient of expansion 
To Bearing outer ring temperature (�C) 
Ti Bearing inner ring temperature (�C) 
Ta Ambient temperature (�C) 
Ψ Probability density function 
Φ Cumulative distribution function 
do Bearing outer ring raceway diameter (mm) 
di Bearing inner ring raceway diameter (mm) 
R Reliability index 
PH Electrical energy generation (MWh) 
PH⋆ Electrical energy generation threshold (MWhÞ

Abbreviations 
O&M Operation and maintenance 
WEC White-etching crack 
SCADA Supervisory control and data acquisition 
HSS High-speed shaft 
HSB High-speed-shaft bearings 
RS Rotor side 
GS-in Generator-side inboard  
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the reliability modeling and prognosis methodology. It first illustrates 
the flow of the methodology and then briefly discusses various models 
developed from loads to probability of failure. Section 3 presents results 
of the methodology using data from an actual wind plant and discusses a 
correlation between various features and component probability of 
failure prediction. Then, the component probability of failure evaluation 
is presented based on the frictional energy accumulation induced by 
roller sliding. Finally, the electrical energy produced is considered as an 
alternative metric and compared to the frictional energy approach. This 
article concludes with a summary of the current research and a brief 
discussion of future work. 

2. Methodology 

This section describes the probability of failure calculation method 
using a set of mathematical models and wind power plant SCADA data. 
The developed models are analytic and therefore can be applied to wind 
plants with various drivetrain configurations or designs. Steps for 
calculating the bearing frictional energy and probability of failure of 
individual turbines within the wind plant are illustrated in Fig. 1 and 
Fig. 2, respectively. 

As shown in Fig. 1, the power, gearbox lubricant temperature, and 
rotor speed are taken directly from the turbine SCADA data. Main shaft 
torque, T in Nm, is not directly measured but can be estimated using 
measured electrical power and generator speed. 

The lumped-parameter gearbox model calculates gearbox bearing 
radial loads and displacements at any given torque. The loads on indi-
vidual bearing rollers are then estimated [19]. Considering roller loads, 
bearing rotational speed, and lubricant temperature, an analytic roller 
dynamics model then computes the roller sliding speeds. Given roller 
sliding speed and roller loads, bE is the summation of the nondimensonal 
energy between each roller as it orbits the inner raceway. Frictional 
energy generated at the interface between the rollers and cage is not 
considered because axial cracking appears on the bearing raceways, not 
the rollers. 

By following the same steps described in Fig. 1, the frictional energy 
accumulation can be estimated for all the turbines within the plant. 
Combining information on frictional energy accumulation for both 
healthy and failed turbines based on the plant failure records, the 

Weibull distribution of the damage threshold bE
⋆ 

of the accumulated 
frictional energy is determined statistically as illustrated in Fig. 2. Given 

the significant uncertainties in calculating bE
⋆
, its Weibull distribution is 

used instead of a constant value. A limit state function G is then defined 
that separates healthy and failure domains by subtracting the frictional 
energy threshold from energy accumulation for a given operating period 
of an individual wind turbine. Finally, a reliability analysis approach 
called first order reliability method (FORM) [16,17] is applied to 
calculate probability of failure Pf of individual turbine bearings 
considering the variability in lubricant temperature, bearing clearance, 

and frictional energy threshold. Depending on the specified tempera-
ture, speed and torque spectra for the analysis, Pf of individual turbines 
bearings can be assessed for a given time in the past or forecasted for the 
future. In the next section, these mathematical models are detailed. 

2.1. Gearbox model 

There are two cylindrical bearings supporting the high-speed shaft 
(HSS) of the studied gearboxes. One of them is mounted close to the 
rotor-side end of the shaft (RS), whereas the other is located near the 
generator (GS-in). To calculate the bearing loads, a three-degree-of- 
freedom lumped-parameter model is established. This lumped- 
parameter model uses torque as the input and calculates the radial 
loads and displacements of all three bearings mounted on the high-speed 
shaft. HSS torque in the gearbox can be calculated using Th ¼

T
εηg, where 

ε and ηg denote the gearbox ratio and transmission efficiency. 
The concise form of the equation of motion can be written as: 

M €qþC _qþ Kðq; tÞq ¼ f ðq; tÞ (1) 

Fig. 1. Modeling steps for calculating frictional energy of individual bearings.  

Fig. 2. Modeling steps for calculating the probability of failure (Pf ) of indi-
vidual bearings. 
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where M;C;K, and f denote the mass, damping, and stiffness matrices 
and the external loads and q denotes the displacements in two radial 
directions and one axial direction. In the model, bearing clearance is 
included to address its effects on bearing loads through piece-wise force- 
deflection functions [18]. The mass matrix, M, comprises the mass of the 
HSS and brake disk with the total mass of 668 kg. Modal damping of ξ ¼
2% is assumed in the simulation, where C ¼ 2ξUTdiagfωngU and U and 
diagfωng are the mode shapes and natural frequencies of the HSS. The 
stiffness matrix is based on the stiffness matrices of all three bearings in 
series connection, listed in Table 1. Finally, the gear mesh force is 
derived from Th. Once the bearing loads are calculated, the roller load 
distribution is estimated using an analytic approach [19]. 

2.2. Roller dynamics model 

With the calculated roller loads, shaft rotation speed, and lubricant 
temperature as the input, a dynamic bearing model calculates the fric-
tional coefficient, bearing cage orbiting, and roller sliding speeds. This 
rolling element bearing model considers roller elasticity, roller dy-
namics, hydrodynamics of lubrication, lubricant temperature, and in-
teractions between the lubricant and rollers. Modeling results compared 
well with direct measurement data on cage and roller speeds for cylin-
drical roller bearings [20]. 

2.3. Frictional energy 

The bearing degradation that results in axial cracking is evaluated 
using the aforementioned accumulated frictional energy mechanism, 
given the calculated roller sliding speed and roller loads. The funda-
mental formula to calculate frictional energy for a single roller under 
sliding for a given period ½0; t� is: 

Ej ¼

Z t

0
μðτÞQijðτÞΔVijðτÞdτ (2)  

where μ denotes the friction coefficient and Qij denotes normal force at 
the inner raceway of roller j. The sliding velocity ΔVij at the roller and 
inner-raceway contact surface equals: 

ΔVij¼
π
60
�
ωgB � ωcdm � ωrjD

�
(3)  

where ωg denotes generator rotational speed in rpm. ωc and ωrj denote 
the cage orbiting and roller, j, spinning speed, respectively. Parameters 
B, dm, and D denote the bearing inner ring raceway, bearing pitch, and 
roller diameters. 

For radially loaded bearings, only about half of the rollers are loaded. 
This loaded area is often called the bearing load zone. The rolling ele-
ments orbit with the cage, entering and leaving the loaded zone every 
orbit. To calculate the total frictional energy generated by all rolling 
elements in an orbit, Eq. (3) is reformulated to reflect the aforemen-
tioned cyclic and time-dependent loading for every roller. During 
normal production, the torque and speed spectra throughout the entire 
operation history are used as model inputs and divided into N ¼ 200 
bins. The estimated accumulated energy counts the accumulated ball- 
pass cycles nk; k ¼ 1;…;N with respect to the inner raceway ball- 
passing frequency under combined radial loads and sliding conditions 
for various wind speeds during the entire operation period, as shown in 

the following: 

EðNÞ ¼
XN

k¼1

2

4 nkZ
2πωg

Z 2π

0
μðk; θÞCijðk; θÞQijðk; θÞΔVijðk; θÞdθ

3

5  (4)  

where Cij ¼
2bijZ
πB is the contact load factor that is defined as the ratio of 

the distance a single roller travels under continuous loading, bij, to the 
physical distance between two adjacent rollers. Z is the number of rol-
lers. The parameter bij is estimated analytically as the length of contact 
ellipse in the circumferential direction based on Hertzian contact theory 
[19]. 

bij¼ 3:35� 10� 3
�

Dð1 � γÞQij

2L

�1
2

(5)  

where L denotes roller length and γ ¼ D
dm

. 
To analyze the reliability of gearbox bearings with respect to axial 

cracking, E is nondimensionalized by an estimate of the work done by 
bearing frictional force, μFR, over the distance, 1440πωgB, that the rol-
lers travel in 24 h as: 

bE ¼
E

1440πμωgBFR
(6)  

where FR denotes the radial load on the bearing. 

2.4. Variations in lubricant temperature and bearing clearance 

The lubricant temperature and bearing clearance also have an 
important influence on the roller sliding velocity, and consequently, the 
accumulated frictional energy. The lubricant temperature is controlled 
by cooling and heating systems, whereas the bearing clearance is related 
to the bearing design, interference fit with the shaft, and the tempera-
ture of the bearing itself. These parameters also vary during turbine 
operation, just like the drivetrain load and speed, and must be accounted 
for when estimating frictional energy accumulation. 

The measured lubricant temperature varies between 25oC and 65oC 
based on experiments conducted on a 1:5MW commercial wind turbine 
[4,21]. Fig. 3 shows the probability density function of the measured 
lubricant temperature and its Weibull fit analyzed in ReliaSoft [22]. The 

Table 1 
Stiffness matrix between HSS assembly including the bearings and gearbox 
housing.  

Stiffness (N/m) Axial Radial Tangential 

Axial 890 � 106 12 � 106 1.5 � 106 

Radial 12 � 106 5900 � 106 190 � 106 

Tangential 1.5 � 106 190 � 106 2700 � 106  
Fig. 3. Probability density function of the measured lubricant temperature.  
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expression of the probability density function of the three-parameter 
Weibull for the temperature spectrum is described as [23]: 

ΨðTÞ¼
β
η

�
T � γ

η

�β� 1

exp
�

�

�
T � γ

η

�β�

(7)  

where β and γ denote the shape and location parameters, and η is the 
scale parameter of the Weibull-fitted spectrum. Weibull parameters of 
the lubricant temperature distribution are listed in Fig. 3, where the 
scale parameter of the lubricant temperature equals 54.7 �C. 

Bearing clearance during operation can change significantly from its 
design value because of the interference fit with the shaft and differences 
in temperature between the rings and rollers. Because of the lack of 
direct experimental data, the variation of bearing operating clearance is 
estimated as [19]: 

ΔPd ¼Γ½doðTo � TaÞ � diðTi � TaÞ� (8)  

where Γ denotes the coefficient of expansion of the bearing. Parameters 
To; Ti, and Ta denote the temperature at the bearing outer and inner 
rings, and ambient temperature, and do and di denote the outer and 
inner ring raceway diameters, respectively. 

Fig. 4 shows the calculated frictional energy over the inner ring with 
various lubricant temperatures and bearing clearances. When the azi-
muth angle is less than 0, the rollers are outside the load zone and no 
meaningful energy is accumulated. When the azimuth angle is near 0, 
the rollers enter the load zone and accelerate. Roller sliding is greatest at 
this point while under low roller loads, resulting in the largest contri-
bution to frictional energy. At the load zone center at an azimuth angle 
of π

2; the rollers are heavily loaded and experience the least amount of 
sliding, generating only small fraction of frictional energy. Once the 
rollers start to leave the load zone at an azimuth angle of π rad, they 
begin to decelerate, generating a moderate amount of frictional energy. 
As the lubricant temperature decreases, the amount of frictional energy 
increases because the lubricant is more viscous and causes more sliding. 
Fig. 4 also illustrates the frictional energy accumulation over the inner 
ring with C2, CN, and C3 bearing design clearances, ranging from 45 to 
145 μm. The original design clearance is assumed to be 120 μm and 50 
μm for RS and GS-in bearings, respectively. The bearing clearance has 
only a modest effect on the frictional energy in higher load cases, but can 
have a much greater effect in low load cases. 

The proposed model considers these variations in lubricant temper-
ature and bearing clearance during operation by integrating all 

temperatures. The probability density function of the lubricant tem-
perature is discretized into 200 equally spaced bins. For a given power 
and rotor speed, 200 calculations of bEk are simulated under various 
lubricant temperatures, as illustrated in Fig. 3, where k denotes the bin 
number. Then bE is computed as 

P

k
ΨðTkÞbEk, where ΨðTkÞ is the proba-

bility density when the temperature is within bin k. Bearing clearance 
variation, ΔPdk, is computed using Eq. (9) for every temperature bin, Tk. 

2.5. Energy threshold 

An essential step in the reliability analysis is determining bE
⋆
, the 

frictional energy threshold. The amplitude of E⋆ has only been reported 
based on bench top testing of a roller sliding against three cylinders for a 

reference oil [8]. Thus, bE
⋆ 

needs to be determined for the gearbox 

high-speed bearings. The probability density function of bE
⋆ 

was esti-
mated through Weibull-fitting of the calculated bE for the entire wind 
plant. The cumulative distribution function of the three-parameter 
Weibull can be derived as [23]: 

ΦðbEÞ¼ 1 � exp
�

�

�
bE � γ

η

�β�

(9)  

where η denotes the scale parameter. ΦðbEÞ indicates the percentage of 
the components among the entire wind plant that will have failed at a 
given bE. For example, ΦðbEÞ equals 63.2% when bE ¼ ηþ γ. 

Fig. 5 shows the Weibull cumulative distribution function of the 
accumulated frictional energy for the wind plant, calculated using 
aforementioned models. For the failed turbines, the accumulated energy 
was calculated during the mean time between failures. The entire 
operation period was considered for the healthy turbines. RS and GS-in 
bearings in both intermediate- and high-speed stages were considered in 
the analysis. The ReliaSoft Weibull fit [22] crosses the x-axis at a 
nonzero energy value (i.e., γ > 0). Based on the analysis, the scale 
parameter, η, equals 22.6. ΦðbEÞ equals 10% when bE ¼ 1.97. The good-
ness of Weibull fit equals 0.97, suggesting a very good fit despite the fact 
that the failure records cluster early in time. The coefficient of variation 
for this Weibull curve is estimated as 0.3 based on its β value [24]. Both 

the mean and variation of bE
⋆ 

are considered for the reliability analysis. 

Fig. 4. Effect of (left) lubricant temperature and (right) bearing clearance on frictional energy.  
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2.6. Reliability analysis 

The accumulation of frictional energy is an irreversible process that 
results in the formation of cracks and associated raceway spalling [7,8]. 
The probability of failure by axial cracking is estimated as bearing 

damage evolves toward the failure threshold, bE
⋆
. A limit state function 

that separates the healthy and failure domains is defined as: 

G¼ bE
⋆
� bEðN; tÞ (10)  

where bE
⋆ 

is the threshold beyond which axial cracking will occur and 
bEðN; tÞ is the accumulated frictional energy for the bearing, considering 
the variations of temperature and bearing clearance. When G is nega-
tive, failure is predicted. 

The probability of failure is evaluated with the integral [25]: 

Pf ¼ PfG < 0g ¼
Z

GðxÞ<0

f ðxÞdx (11) 

The parameter x is the vector that consists of all the considered 
variables. The function, fðxÞ, is the joint probability density function for 
these random variables. Direct evaluation of the probability integration 
can be difficult and time-consuming given the number of random vari-
ables and the nonlinearity in G. 

FORM is an efficient way of estimating Pf [16,17] and is used in this 
study. This approach simplifies the integrand by transferring the random 
variables from their original random space, x, into standard normal 
space based on the knowledge that the cumulative distribution functions 
of the random variables remain the same before and after the trans-
formation. Through searching the point on the integration boundary 
with the highest probability density, the distance from the origin to this 
most probable point, called the reliability index, R, is obtained. There-
fore, the probability of failure can be estimated as [25]: 

Pf ¼Φð � RÞ (12)  

where Φ is the cumulative distribution function of the standard normal 
distribution. 

The limitations of the study include that it:  

� relies on the degradation model for axial cracks, which was derived 
from benchtop experiments;  
� focuses only on normal power production conditions averaged over 

10-min periods. It does not investigate the potential effects of tran-
sient wind conditions and turbine events on roller sliding and 
bearing axial cracks; however, the frictional energy accumulated 
during transient events is much less than normal power production 
[26];  
� addresses a limited number of uncertainties, including lubricant 

temperature, bearing clearance, and frictional energy accumulation. 
Uncertainties in bearing surface roughness, lubricant viscosity and 
additives, and material properties, as well as SCADA inputs, have not 
been considered;  
� does not consider other data streams that could potentially augment 

reliability analysis, such as condition monitoring, because of the 
limited data availability. 

3. Results and discussion 

A total of forty-nine 1.5-MW wind turbines in a commercial wind 
power plant were analyzed to calculate the probability of failure of 
gearbox HSS bearings. The wind plant is located on a flat plain, but its 
northern border is close to a rugged valley. The dominant wind comes 
from the southwest. The secondary wind direction is from the northeast, 
across the valley mentioned earlier, which could cause wind turbulence. 
A majority of the time these turbines operate near either rated torque or 
very limited torque. The wind turbines all have three-stage gearboxes, 
with a transmission ratio of about 80, which are provided by multiple 
suppliers. Despite different gearbox manufacturers, cylindrical bearings 
are used in the intermediate- and high-speed stages. The data set in-
cludes 10 years of operational data and axial cracking failure records. In 
this study, a reliability analysis of this wind plant is performed assuming 
the plant has been operating for 20 years. Operation profiles of power 
and rotor speed from year 11–20 are assumed to be identical to those 
from year 1–10 to investigate the reliability of bearings during the 
gearbox design life. 

3.1. Probability of failure analysis using frictional energy 

Common maintenance practice typically treats the HSS and sup-
porting bearings as one unit to save costs. When any part fails, the entire 
assembly is usually replaced. The fault tree analysis considers RS and 
GS-in bearings in a series relationship, resulting in: 
�

Pf
�

HSB ¼ 1 �
�
1 �

�
Pf
�

RS

��
1 �

�
Pf
�

GS� in

�
(13) 

Fig. 6 compares the Pf of the RS and GS-in bearings individually, and 
the high-speed-bearing (HSB) set together for all 49 wind turbines. The 
Pf for the individual bearings and the combined bearings monotonically 
increase with operating time, reaching 0.54, 0.63, and 0.83, respec-
tively, after 20 years. The GS-in bearing has a slightly higher probability 
of failure than the RS bearing for this particular wind plant, which 
matches field observations. After 2.5 years, there were 9 failures out of 
49 turbines on HSS bearings, equating to a failure percentage of 18%. As 
shown in Fig. 6, the probability of failure for the bearing set is about 
20% after 2.5 years of operation, matching the previously mentioned 
calculation. Small differences in the Pf among these wind turbines are 
present; however, these differences in the Pf are insufficient to single out 
the unhealthy turbines from the entire population. 

Fig. 7 compares the Pf of the HSB system for the individual turbines 
within the plant after 10 years and quantifies the small differences in Pf 

between turbines. The probability of failure ranges from 0.591 (wind 
plant row 2 and column 4) to 0.617 (wind plant row 1 and column 5). 
Quantifying Pf for each turbine can provide information for O&M 
decision-making. Furthermore, correlating the Pf of individual turbines 
with the wind plant layout may suggest the significance of terrain, wake, 

Fig. 5. The Weibull cumulative distribution function of dimensionless fric-
tional energy accumulation. 
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and other location-related factors on turbine health. 

3.2. Probability of failure analysis using electrical energy generation 

In addition to using frictional energy as a damage metric, electrical 
energy generation, PH, is also considered for comparison. It is a readily 
available measure of turbine usage but is the same for every bearing in 
the turbine. The process of calculating probability of failure based on 
electrical energy generation is the same as discussed previously, 
including determining the threshold, PH⋆, for the electrical energy using 
both SCADA and maintenance records, defining a limiting state function 
GðPHÞ ¼ PH⋆ � PH; and calculating the Pf using FORM. The probability 
density function of PH⋆ was determined by the Weibull fit of all of the 
healthy and failed wind turbines. Fig. 8 shows the cumulative distri-
bution function from the Weibull fit. The scale parameter of PH⋆ is 
estimated as 1:62 GWh. 

Fig. 9 shows the calculated Pf based on the measured energy 

generation for the same operation conditions as Fig. 6. Compared to 
Fig. 6, the Pf using energy generation shows the same trends and has a 
similar amplitude of 0.49 after 20 years (about 100 MWh). However, the 
Pf at low electrical energy has higher values than the frictional energy 
approach. Most importantly, the Pf of each of the 49 turbines is almost 
indistinguishable. Thus, Pf analyses using electrical energy generation 
cannot differentiate the axial-cracking risks among the turbines. 
Furthermore, a reliability assessment using electrical energy generation 
cannot assess the individual bearings. Despite these shortcomings, using 
electrical energy generation can provide a fast estimate of the risks of 
bearing axial cracking, but only at the wind plant level. 

Both frictional energy and electrical energy generation reflect the 
usage of the turbine and result in highly correlated reliability pre-
dictions for the bearings. Even though electrical energy generation 

Fig. 6. RS, GS-in, and HSB system Pf based on frictional energy.  

Fig. 7. HSB Pf of individual turbines within the plant after 10 years.  

Fig. 8. Weibull cumulative distribution function for electrical en-
ergy generation. 

Fig. 9. HSB system Pf based on electrical energy generation.  
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cannot be used to quantify the reliability of individual bearings, it avoids 
the detailed calculations required of accumulated frictional energy. 

3.3. Feature engineering analysis of damage metrics 

The previous discussion of bE and PH suggests that studying damage 
metrics can be beneficial for further differentiating failure risks among 
wind turbines. Using the provided wind plant data, a feature engineering 
statistical analysis was conducted to investigate predictive features for 
the wind plant with a broader scope, including not only frictional energy 
and its constituent components, but also turbine siting metrics, the 
gearbox lubricant, and the gearbox manufacturer. The maximum, min-
imum, and mean values of roller loads, cage speed, roller deflections, 
sliding speed, roller speed, and frictional energy within every 10-min 
window are calculated for each turbine using the aforementioned 
mathematical models up to the point of failure. The distance from the 
nearby valley is considered as an additional feature that most likely 
introduces turbulence, as well as the distance to the nearest turbine as a 
potential source for wake influences. 

The relationship between each of these features and the number of 
failures was assessed using box plots and quantified using a Wilcox test 
[27] for numerical features and Chi-squared test for the categorical 
variables (e.g., lubricant) [28]. The analysis is limited to a single turbine 
manufacturer and HSS bearing failures. Fig. 10 compares box plots of 
the averaged frictional energy and total electrical power generation over 
10 years between failed and nonfailing high-speed bearing sets. The 
greater the difference between the healthy and failed distributions, the 
greater the chance that the feature is predictive. The electrical and 
frictional energy distributions for the healthy and failed wind turbines 
overlap significantly. Although there are observable differences in 
several features, the Wilcox test suggests that only the sliding speed 
maximum appears significantly correlated with failure when using the 
data subset analyzed here. 

To assess the ability of combining multiple features to predict fail-
ures, multivariate model fitting using logistic regression and random 
forest models are explored. The considered features include terrain 
features, lubricant, frictional energy, roller loads, sliding speed, and 
electrical energy. The accuracy of each logistic or random forest model is 
studied by evaluating its ability to outperform a simple model that al-
ways chooses the most common class (i.e., no failure). The logistic 
regression and random forest model predict greater than 81% of 

accuracy, which is the baseline for the sample model. A random forest 
model that utilizes an ensemble tree classification modeling method 
performed the best and obtained 93% accuracy, with 97% sensitivity 
(true positive rate) and 75% specificity (true negative rate). 

Despite the relatively small sample size and limited diversity of 
gearbox models, bE and its constituent components, combined with 
lubricant and terrain features, demonstrate some potential as prognostic 
precursors and damage metric for monitoring bearing axial cracking. 
More operational data and failure records from different wind plants and 
gearbox manufacturers are required to substantiate this finding. To fully 
understand the relationship between the constituent features and failure 
probability, questions about the ideal design of numerical experiments 
and analysis windowing of data must be addressed as well. 

4. Conclusions 

A methodology for reliability assessment and prognosis of wind 
turbine gearbox bearings is presented in this work. Unlike other reli-
ability analysis approaches, the methodology uses a physics-domain 
model, SCADA data, and wind plant failure records to forecast the 
probability of failure of individual gearbox bearings in each wind tur-
bine within the plant. It provides physical insight into the bearing failure 
mechanism and connects reliability to turbine design and wind plant 
operations. It can be used by turbine designers and plant operations to 
evaluate the effects of design and operations changes on bearing prob-
ability of failure to proactively prolong turbine life. 

The methodology was applied to bearing axial cracking failures. 
Frictional energy accumulation and electrical power generation were 
considered as damage metrics. Only normal power production condi-
tions were considered in the analysis because frictional energy accu-
mulation is limited during transient turbine events. The reliability 
analysis using electrical power generation, although relatively simple, 
does not assess individual bearings like using frictional energy accu-
mulation. Other damage metrics and physical drivers of bearing axial 
cracking may exist and could be explored using the established 
methodology. 

The reliability analysis of 10-min-average SCADA data only showed 
small differences in the probability of failure for the wind turbines; 
however, these differences were insufficient to single out the failed 
turbines from the rest. A feature engineering analysis did show that the 
frictional energy and its constituent components, combined with 

Fig. 10. Box plots of the (left) total electrical energy and (right) average frictional energy for healthy and failed HSBs. The horizontal line is the median and the box 
surrounds the interquartile range (25–75 percentile). The vertical line extends to the most extreme data points. 
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lubricant and terrain features, have some potential as a damage metric 
for monitoring bearing axial cracking. Further work is needed to refine 
the damage metric by incorporating additional prognosis precursors and 
examining a larger amount of high-resolution SCADA data and failure 
records. 
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