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ABSTRACT
The size of existing data sets regarding human mobility
and person-to-person contact has been limited by the labor-
intensive nature of the data collection techniques employed.
In this paper, we propose a practical data collection system
which is automatic and transparent to the user, requires
only installing new software, and uses the multiple sensing
capabilities provided by current commodity mobile devices.
This approach allows the scale and duration of these human
contact studies to increase by several orders of magnitude
and allows for the collection of location and contact informa-
tion about individuals who do not install our data collection
software. We present an analysis of the expected coverage of
our data collection system drawing from existing data sets
and random graph theory. To illustrate the type of applica-
tion enabled by the availability of human contact data, we
present“personalized epidemiology,”a novel application that
provides its users with information about their exposure to
illness and offers advice on how to remain healthy.

1. INTRODUCTION
Large-scale data regarding human mobility and person-

to-person contact has the potential to enable new frontiers
of research in fields such as epidemiology and behavioral
research as well as guide new mobile technologies and ap-
plications. We propose to use electronically-collected data
to approximate the complete contact graph. Participants
can run software on their existing mobile devices to detect
their patterns of movement and contact with other individ-
uals. Because participants’ devices can infer location and
contact information about non-participants as well, the size
of the population studied can be dramatically larger than
the number of participants.

Our principle goal is to suggest a system that is capable
of extracting the contact patterns of a very large population
using a relatively small number of sensors. To achieve this
scalability, these sensors are deployed organically on a vol-
unteer basis and use a combination of existing technologies
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to infer contact information. To justify our approach, we
provide an a priori analysis of the ability of a subset of real-
istically connected observers to document the connectivity
of the population as a whole. We also discuss the limitations
of this framework, not least of which are the inherent privacy
implications, which we do not attempt to resolve here.

As an example of the kind of application enabled by this
type of rich contact data, we propose personalized epidemiol-
ogy. By combining traditional disease modeling techniques
with knowledge of individuals’ contact patterns and real-
time information, it may be possible to identify risks and
propose interventions appropriate to each person at any mo-
ment.

2. RELATED WORK
Although many researchers have considered modeling mo-

bility and contact patterns, few data sets exist that are suf-
ficient in their resolution and size. The simplest models are
purely theoretical. Placing way-points at random, or as de-
termined by Brownian motion, is a common näıve approach
which has been shown to poorly predict reality [31]. In [25],
the authors study human mobility in tens of kilometer wide
areas (i.e., college campuses, amusement parks, etc.). They
find human patterns to be statistically similar to Levy walks,
a type of motion studied in particle physics.

There have been several attempts to gather empirical data.
Many data sets used in the social sciences provide complete
records of participants’ contacts with anyone; these have
been produced by hand and therefore cover a small num-
ber of people for a short period. Good introductions to
these methods and specific data sets are provided in [11,
20]. Automatic but coarse mobility traces have been pro-
duced using a relatively small number of fixed sensors to
track a large number of mobile users. The data collected at
the access points (APs) on the Dartmouth campus [14] is
probably the best example, although the work of Balazinska
[1] on modeling a corporate wireless network and that of re-
searchers at UCSD [17] is also worth mentioning. Because
these data sets can only describe mobility on a fixed way-
point based resolution, some more recent work has gone into
using mobile sensors to track mobility and contact on small
scales, such as [9] and the PDA and iMote experiments in
[6]. These are generally limited to analyzing contact among
participants. Other studies have inferred proximity from in-
formation such as student classroom schedules [28], mobile
phone call records [23] or workplace computer log-ins [8].

Our proposal primarily differs from this prior corpus on
the basis of scope. Whereas previous projects have focused
on small domains, used specialized hardware, or required



Figure 1: System example

total participation, our proposal is able to scale to any size
population with any proportion of participant sensors. We
accomplish this by using a simple design which is based on
already ubiquitous and inexpensive technology whose power
we demonstrate with a novel epidemiology application.

3. TOWARD A GLOBAL DATA SET
Contemporary mobile electronic devices include mobile

telephones, laptop computers, music players, digital cam-
eras, PDAs, and many more. Such devices are nearly ubiq-
uitous in wealthy countries, and are only increasing in their
global reach, number, and capabilities. Because of their
ubiquity, there has been significant interest in using such
devices as sensing platforms.

3.1 System Concept
We propose to take advantage of two capabilities that are

both wide-spread and mature in wireless consumer devices:
the ability to communicate with – and therefore also de-
tect and uniquely identify – other devices, and the ability to
determine their own location. By regularly recording their
location and the other devices’ identifiers in the area, par-
ticipants’ devices can produce the raw traces from which
mobility and contact models can be built.

Sensor Types –We envision a system involving a mix of
mobile sensors, such as smart phones, and fixed sensors such
as access points and wireless sniffers. The use of fixed sen-
sors is motivated by the observation that there are common
meeting and aggregation points for individuals (i.e., coffee
shops, cafeterias, classrooms, etc.) [12]. An obvious candi-
date for this task is wireless APs, which are already deployed
with great density and have similar capabilities to embed-
ded platforms used in mobile devices with the additional
benefit of having a reliable power supply and a stable lo-
cation. In our concept, individuals would volunteer to run
sensing software on their APs or mobile devices. This soft-
ware would then collect traces and transmit them to an ag-
gregation point where they would be combined, filtered, and
stored.

Unique Identifiers –Most devices can be uniquely iden-
tified with a fixed global identifier advertised by the wire-
less communication protocol. For instance, both Bluetooth

and IEEE 802.11 transmit their hardware (MAC) address in
every frame. Even in the absence of explicit identifiers, ra-
dio frequency (RF) and traffic characteristics may uniquely
identify devices in some cases [3].

Proximity Granularity – Every wireless communication
technology, from the infrared signals used by remote controls
to the various radio systems of Bluetooth, WiFi, and cellular
telephony, has its own detection capabilities and limitations.
There is a significant body of work on using such detection
capabilities for other purposes or on smaller scales (e.g., [9,
15, 19]). In general, the longer-range technologies provide
the greatest radius of coverage, but with the least resolution
of location. For example, if an 802.11 device is able to detect
two devices at the same time, they are likely within 100
meters of each other. In the case of Bluetooth, it is more
likely 101. By using many technologies, it is possible to
build a multi-resolution data set, in which the researchers
interested in gathering contact data can trade-off between
precision and completeness.

Inferring Contacts – Human contact (i.e, proximity in
space and time) must be inferred from the measured data.
This is simple for direct detections: if participating device
a senses neighboring device b using communication technol-
ogy t, then we can say with fair certainty that a and b were
within the sensing radius of t of each other, and can there-
fore connect a and b on the graph at that point in time. The
observed signal strength can give an imperfect further hint
about their distance. A more difficult scenario arises when
a participant detects several devices: it can be inferred that
each device was within a known range of the sensor, but
they could be adjacent to or opposite each other. The pos-
sible separation between nodes in such inferred contacts is
up to twice that of directly-measured contacts. Unless the
measurements are simultaneous, there is also temporal un-
certainty. This is especially a concern with fixed sensors,
which always must infer connections between the nodes it
senses. Contact is not boolean: it includes physical and tem-
poral proximity.

Sensing Example –Consider Figure 1. In this example,
there are two sensors, one mobile - the phone pictured at
center, and one fixed - the wireless access point. Here, the
mobile sensor is able to detect the PDA using its Bluetooth
sensor, and the laptop using its 802.11 sensor. The access
point may have greater sensitivity and be able to sense an
additional mobile device that is outside the reach of the mo-
bile sensor. The typewriter is undetectable since it does not
produce a directly-measurable RF identifier. In this sce-
nario, contacts between the non-sensor devices, such as the
PDA and laptop, must be inferred. Because the inferred
PDA-laptop contact is noticed by two sensors, we can as-
sign it a higher confidence, and using signal strengths and
possibly additional sensors, we can start to use trilateration
to pinpoint the devices to a higher degree of confidence.

Localization – Although it is not essential for generation
of strict “contact” graphs, localization provides a means of
mapping the contacts observed into the physical environ-
ment. This creates greater opportunity for connection infer-
ence as well as tracking movement. For fixed devices, the lo-

1Communication range depends on the antennas, power lev-
els, and modulation schemes in use, as well as many environ-
mental factors. Some of these may be known to the system,
or reasonably estimated, but significant uncertainty is un-
avoidable.



calization problem is trivial - it can be computed accurately
once and stored. For mobile devices there are a few localiza-
tion technologies that are currently available and in general
use. The Global Positioning System (GPS) allows for fine
grain localization in outdoor environments, but is ineffective
in indoor environments, which are of interest for many pur-
poses. Global System for Mobile communications (GSM)
localization is based on multilateration2 and provides coarse
grain localization. 802.11 based localization services such as
SkyHook [27] claim resolutions of 10 to 20 meters, but suf-
fer from their data collection methods relying on manually
collected and contributed AP observations.

Sensor Fusion –Producing a global view of the location
and contact record entails combining qualitatively different
types of data, with differing confidence levels, acquired from
many devices. Some data, such as GPS location, have well-
defined confidence intervals. Others, such as signal strength
ranging, require subjective judgment by the system design-
ers. It consequently makes sense to reason in terms of de-
grees of belief as in Dempster-Shafer theory [26]. Suppose,
for example, that participating devices a and b estimate
themselves to be in the same place, and they detect non-
participants c and d respectively, but neither detects both.
Our belief that c and d are within two detection radii of each
other depends on our degree of confidence in the following
statements: 1) a and b are in the same place, 2) c is near a
3) d is near b, 4) d is not near a, and 5) c is not near b. If a
and b have GPS devices and are sensing with 802.11 devices
on different channels, we have a strong belief in 1, and very
weak belief in 4 and 5, so we end up with a reasonable belief
that c and d are close.

3.2 Challenges
Simplicity usually comes with a cost, and our proposal

is no different. There are a few significant limitations, as-
sumptions, and concerns which must be considered. By its
very nature, using a mobile device as a unique identifier for
a person has some issues.

Device↔ Person Mapping –So far, we have spoken as
though detecting a device was equivalent to detecting a per-
son. It is important to handle several cases: a person with
multiple devices, a device with no person (infrastructure),
a device which is passed between multiple people, and a
person without a device. It is not likely that any of these
can be handled completely, but good-enough filtering via
heuristics and optimization strategies may be possible. For
instance, infrastructure devices can be differentiated from
people, because people are observed to move and therefore
generate contacts in different locations whereas infrastruc-
ture presumably never moves. Individuals with multiple de-
vices will often move their devices in concert. Hence, a group
of closely correlated devices (in space and/or the connectiv-
ity graph) are most likely a single individual. Users without
devices pose a difficult problem, which cannot be addressed
directly.

Selection Bias –There are two issues here. First of all,
the sort of electronic devices that we can detect are not uni-
formly distributed throughout the population. Telephones
may be sufficiently universal, but other equipment is prob-
ably correlated with wealth and other influences. Second,
within the group of electronics-bearing people, participants

2Determination of location by computing the time difference
of arrival (TDOA) between signals from multiple cell towers.

in a large-scale data gathering system are likely to be self-
selecting. There is no reason to believe that this group will
be representative. While we cannot remove this bias from
the data, we can hope to account for it by comparing our
results with separately compiled demographic information
on technology usage [24].

Privacy – There are obvious privacy issues which we will
not pretend to resolve here. Devices’ unique identifiers can
be obfuscated to prevent directly linking measurements to
specific people, but the risk remains that sensitive infor-
mation could be inferred from context. The information
recorded would be minimal relative to other network mon-
itoring, but the proposed scope increases the importance
of what is revealed. We leave this debate to those more
qualified to discuss the legal ramifications of the system we
propose.

3.3 Completeness
One goal of the system we propose is to provide informa-

tion about not only the participants’ contact patterns, but
those of the non-participants they encounter. The quality
of that information will depend on the fraction of the pop-
ulation participating (f), the number of other people within
each participant’s area of observation at any given moment,
and the statistical distribution of their contacts. These can-
not be known in advance, but we propose some plausible
a priori models, and tests for ex post facto evaluation of a
data set.

3.3.1 Analytical Projections
One reasonable measure of completeness is the popula-

tion coverage, that is to say the fraction of the population
included in the data in any given time window. If we model
device contact as a graph, G = (V, E), every device is a ver-
tex, and there exists an edge between two vertices if they
can detect each other. The devices covered are then the
participating devices plus their immediate neighbors in the
graph. Without knowing the actual contact patterns for the
proposed system, we are limited to making educated guesses
based on prior research. Analytically, the expected coverage
as the total number of nodes n increases is given by Equa-
tion (1), where f ′ is the fraction of nodes not participating
and P (x) is the probability of a node having degree x:

lim
n→∞

coverage = 1 −

„

f ′

·

Z

f ′xP (x) dx

«

(1)

Exact results depend on the degree sequence P (x), but dif-
ferent probability sequences with similar expected mean de-

grees (d̂) behave similarly for our purpose, especially when
the set of participating nodes is sparse. Existing work sup-
ports the idea that social graphs can be modeled reasonably
well as random graphs with particular degree distributions,
especially power-law distributions [2, 22, 10]. Similar re-
sults have been found for device-level contacts [5, 16]. For
the simple case of a regular random network, Figure 2 shows
the expected coverage relative to the fraction of nodes par-
ticipating and the mean degree. Coverage is bounded from

above by f plus the product f · d̂, which represents the case
that all of the participating nodes’ connections are with non-
participants. That bound is relatively tight for small values
of f . Note, for instance, that for 1% of the population par-
ticipating and degree 100, the actual coverage is 64%. It is
important to note that device detections, and therefore the
edge set, degree distribution, and all derived graph proper-
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Figure 2: Population coverage relative to the frac-
tion participating and the number of individuals
each node can see; uniform regular contact graph.

ties, are a function of time. The effects of time span are
discussed further in the next section.

3.3.2 Naïve Empirical Simulation
Using random graphs along with empirical estimates of

inter-contact times (ICT) from the literature, we can take
this a step further by simulating the expected average cov-
erage of a population as a function of the time-period of
measurement and the proportion of the population partici-
pating. In [25], Rhee et al. tie together mobility and con-
tact results from different scales and claim that they all are
well modeled by a power-law distribution. Indeed, in [6],
UCSD researchers find similar slope power-law fits to the
inter-contact times (ICT) in 6 trace sets from various mea-
surement studies. Most of the data they study fits with
k = 0.3 to 0.4 in the tail, and a few deviant traces have
k = 0.9. Using these empirical estimates of ICT distribu-
tions, we can simulate the contact dynamics using a random
graph and study the way coverage converges as a function
of the number of participants. The ICT distribution, which
is modeled as Pc(t), the probability of two randomly chosen
nodes p and q contacting within time t:

Pc(t) = atk (2)

Where a is a scaling factor for the distribution:

a =
1

tk
max

(3)

We can then trivially define the mean degree d̂ over some
time t as follows, where n is the population size:

d̂(t) = (n − 1) ∗ Pc(t) (4)

A Monte Carlo style simulation follows easily. For a pop-
ulation of size n, there are n(n − 1) possible unique con-
nections, each of which is connected with probability Pc(t).
By placing the fraction of participants f at random in the

Simulated Connectivity Coverage by Number of Participants in a 1000 Person Population
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Figure 3: Simulated population coverage (percent-
age of people seen by participants) for a 1000 user
population and k = 0.35 in the Pc calculation as a
function of the number of participants and time pe-
riod.

population, we can study how well they are connected as
t and f vary. Because the mean degree is not directly a
function of the population size, this model is independent
of the population size. Figure 3 plots these results for a
representative population of 1000. We can see how the per-
centage of the population seen by the participants grows as
a function of time and saturates for higher proportions of
participants. For instance, with 10 participants out of 1,000
(top-left in figure 3) we can see that the coverage converges
to 100% after only one day. Although this is clearly an upper
bound since it does not consider asymmetries in the graph
and tries to model the complexities of human movement with
a straight-line fit through data, it is certainly motivating as
a first estimate.

3.3.3 Evaluating an Existing Data Set
The previous sections were concerned with estimating the

quality of data which might be obtained, a fundamentally
perilous task. Once the data is in hand, however, there are
a number of reasonable tests one may apply to either the
whole set or selected subsets. Most of the proposed tests
are based on the assumption that participants are represen-
tative of the population as a whole. With that assumption,
for a characteristic which can be directly measured for the
participant set and inferred for non-participants, differences
between the two sets suggest data completeness problems.

Population Coverage –The number of devices seen can
be compared with an estimated true population size. For
cellular telephones, “ground truth” is theoretically available:
carriers already know the state and very rough location of
every active phone. For other devices, an estimate must be
based on human population, market penetration, estimated
duty cycles, and other approximations as in surveys such as
those conducted by [24].

Temporal Coverage Quality –For those devices seen at
all, an obvious question is “what fraction of the time were
they being observed?” This can be answered directly from
the data, but to be useful it needs to be normalized against
how often a perfect observer would see them. Suppose that
an average phone is active and near anyone x hours per
day. The quality of temporal coverage should be evaluated



relative to the perfect case of seeing non-participants x/24
of the time, not all the time.

Connection Coverage –Observing contact between non-
participants is important to the overall quality of the data.
To infer such contact, both parties must be detected. If de-
tection and non-participant contact are perfectly indepen-
dent, one would expect the square of the population cover-
age. If meeting each other is correlated with also meeting
a participant (that is, being detected) – which is not unrea-
sonable if both types of meeting occur in popular places [12]
– the connection coverage would approach the population
coverage. The actual quality can be estimated by comparing
the number of connections known to occur on participating
nodes with the number observed on non-participating nodes.

Relative Entropy –An alternative to estimating the qual-
ity of the data set is to estimate the quality of the observers.
For some measure of interest, the marginal information in
any observation can be regarded as the Kullback-Leibler dis-
tance between the distributions of the measure taken over
the data sets with and without that observation [7]. If the
relative entropy from the addition of participants converges
to zero, that strongly suggests that the distribution of the
measure has converged.

4. PERSONALIZED EPIDEMIOLOGY
One application that could be deployed using the sens-

ing model we describe is a system to give users informa-
tion about their potential exposure to disease. Traditional
(Kermack-McKendrick) infection models assume homoge-
neous contact between individuals. Better information about
contact patterns allows more accurate modeling [21]. For
example, it is believed that the 2002-2003 SARS epidemic
started among groups with atypically high connectivity (poor
families living in close proximity). Based on the initial
spread, researchers estimated the disease to be far more
infectious that it actually was and predicted an epidemic
at least an order of magnitude worse than what occurred
[4]. Structure-aware network models have been applied ret-
rospectively to outbreaks in hospitals, where patients’ and
caregivers’ contacts can be reasonably estimated [18].

By combining such techniques with knowledge of individ-
uals’ contact patterns and real-time information gathering,
we propose an application to identify risks and propose inter-
ventions appropriate to each person at each moment. Using
our application and sensing framework, it would be possible
to estimate the risk that people whom an individual sees
regularly are sick. This application provides not only an
example of how the data sets collected using our proposed
method could be used, but also a possible incentive for an
individual to participate in a data gathering system. Addi-
tionally, because this application operates on local networks
of individuals and doesn’t necessarily need a complete graph
to make predictions, it is robust to sparseness in the contact
graph early in the deployment.

The proposed application consists of two parts: the mobile
sensors that are collecting contact and health data about the
users and a centralized processing service that sends health
alerts to keep users informed of their risk level. The next
section describes various methods for collecting health infor-
mation and the subsequent section describes how the cen-
tralized service produces health alerts for users.

4.1 Obtaining Health Information
Direct Reporting –The simplest approach is to allow users
to provide information about their own health. This could
be accomplished by a mobile application that runs on devices
participating in the contact monitoring system. The appli-
cation would allow the user to report symptoms of common
illnesses and save them as their current health state. The
user-specified health state along with the sensor-based con-
tact data will then be delivered to the centralized processing
service.

Sensing –Additionally, it might be possible for the appli-
cation to sense symptoms that the user is experiencing or
has been exposed to and automatically record them as part
of the user’s health state. Some sensing capabilities of mo-
bile devices, such as a mobile phone’s microphone, may hold
the potential for such automated detection. Ordinary micro-
phones on low-power sensor nodes have been used to analyze
gun fire and identify the source location, direction, and type
of weapon involved [29]. One can imagine using existing mi-
crophones to identify coughing, for example, and possibly
even categorize the type of cough in order to estimate prob-
ability of infection. Although this is an extremely noisy data
source, from which it is difficult to make useful predictions,
we are motivated by other successes in extracting health in-
formation from noisy data. For instance, several groups have
recently reported success inferring aggregate health informa-
tion from online behavior. Notably, very strong correlations
were found between influenza-related searches and actual
disease prevalence [13], and web searches were a leading in-
dicator for the 2008 Canadian listeria outbreak [30].

4.2 Health Alerts
Health alerts would keep users of the system informed

about their level of contact with potentially sick individuals
and allow for a proactive approach to disease prevention.
The specifics of such a processing and notification system to
combat the spread of disease is beyond the scope of this work
and would require the collaboration of medical profession-
als. Whatever the disease model(s) employed, the output
would be fairly simple. Users would be given a qualitative
assessment of their disease exposure risk at that time, and
specific guidance if appropriate. It is our belief that appro-
priately timed situation-specific advice could lead to better
compliance – and better outcomes – than “standing orders”
to which people may become desensitized. Also, many pro-
phylactic treatments do not make sense for the entire pop-
ulation because of side effects, cost, or limited availability.
In such cases, contact information may help to identify the
most appropriate candidates [8].

5. CONCLUSIONS
This paper describes a system for gathering a global-scale

database of human mobility and contact information, and an
example of a health application enabled by such data. This
approach replaces a labor-intensive process with an auto-
mated process which can be continuous in time and ubiqui-
tous in scope. We argue that this can be achieved by lever-
aging the capabilities of existing mobile devices, so that no
effort is required from study participants beyond the initial
installation of software. In a world with billions of mobile
electronic devices, the participation of even a tiny fraction
of users could produce a data set of unprecedented detail
and breadth.



There are significant unresolved issues, both social and
technical. Foremost among these are the privacy questions.
Even so, we suggest that the scientific and practical poten-
tial of such data and applications more than justifies their
continued exploration.
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G., de Menezes, A. M., Kaski, K., Barabási,
A.-L., and Kertész, J. Analysis of a large-scale
weighted network of one-to-one human
communication. New J. Phys. 9, 6 (June 2007), 179+.

[24] Pew Internet & American life project.
http://www.pewinternet.org/, May 2009.

[25] Rhee, I., Shin, M., Hong, S., Lee, K., and Chong,
S. On the levy-walk nature of human mobility. In
INFOCOM 2008. The 27th Conference on Computer
Communications. IEEE (April 2008), pp. 924–932.

[26] Shafer, G. A Mathematical Theory of Evidence.
Princeton Univ. Press, 1976.

[27] Skyhook wireless. http://www.skyhookwireless.com.
[28] Srinivasan, V., Motani, M., and Ooi, W. T.

Analysis and implications of student contact patterns
derived from campus schedules. In Proc. MobiCom ’06
(New York, NY, USA, 2006), ACM, pp. 86–97.

[29] Volgyesi, P., Balogh, G., Nadas, A., Nash,
C. B., and Ledeczi, A. Shooter localization and
weapon classification with soldier-wearable networked
sensors. In Proc. MobiSys ’07 (New York, NY, USA,
2007), ACM, pp. 113–126.

[30] Wilson, K., and Brownstein, J. Early detection of
disease outbreaks using the Internet. Canadian
Medical Assn. Journal 180, 8 (April 2009), 829 – 831.

[31] Yoon, J., Liu, M., and Noble, B. Random
waypoint considered harmful. In INFOCOM 2003.
Twenty-Second Annual Joint Conference of the IEEE
Computer and Communications Societies. IEEE
(March-3 April 2003), vol. 2, pp. 1312–1321 vol.2.


