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Abstract In this paper we apply chaotic systems to the task of sequenr@ion for the purpose of aiding humans in
setting indoor rock climbing routes. This work expands aompork where similar variations were used to assist in
dance choreography and music composition. We present afiaation for transcription of rock climbing problems

and a variation generator that is tuned for this domain amtlemdes some confounding problems, including a new
approach to automatic selection of initial conditions. \Walgze our system with a large blinded study in a commercial
climbing gym in cooperation with experienced climbers arpest route setters. Our results show that our system is
capable of assisting a human setter in producing routegathatt least as good as, and in some cases better than, those
produced traditionally.

1 Introduction

Computer assistance in creative tasks, generally the doafi@iognitive science or artificial intelligence researish,

a well established idea that can claim varied success. Btarine, there has been some success in utilizing chaotic
dynamics or pseudo-random sequences to create art or mudif][ In this paper, we are concerned with the more
modest goal of using computers agsisthumans in a creative task, particularly using chaotic systéo generate
variations on indoor rock climbing routes. In prior work adtic systems have been successfully used for generating
interesting variations in domains such as dance chorebgrapd music composition [1, 3]. In these applications,
the sensitive dependency on initial conditions of chaotgtems is exploited to generate a variation that suffigientl
deviates from the input to be unique and interesting, whikh@ same time maintaining its basic style. In this work,
we adapt these techniques to the domain of indoor climbintgrsetting and validate our approach via a large study
in a commercial climbing gymWe show that computer-aided route setting can produce souteat climbers prefer

to those set traditionally.

While once just for training, indoor climbing has become aipapsport of its own, with at least one and sometimes
several dedicated climbing gyms in a city of sufficient s&eurvey conducted by Roper Research for the Recreation
Roundtable reported that in 2003, approximately 3% of thepdBulatiort, or 8.7 million people, participated in
some sort of rock climbing [9]. Indoor climbing walls are talled in configurations and orientations to mimic rock
formations. Experienced route setters bolt polyurathdrdds” to the wall to form a “problem”. Holds come in all
shapes and sizes; the most common hold shapes are jugsdfeneteep-walled pockets), crimps (shallow ledges),
pockets (open holes), and jibs (small foot pieces). Alttotigere are also an infinite number of possible composite
shapes that can form holds. Routes can be short (“bould@ondpng and can be vertical or horizontal (“traverses”).
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1 According to US Census data, the US Population was 290,24®luly, 2003,



In the use case that motivates our work, we imagine a router seho decides to seek assistance from our software
while setting a route. She might choose to do this eitherdmecaf a need for inspiration (creativity block), or perhaps
because she is a novice setter in need of guidance. The dipstwblves transcribing several routes using the notation
we describe in section 2 that can be used as input to theiearig¢nerator. These routes are entered into our software
and stored in a route database. To generate a variationetter selects one or more routes to vary. The program
presents the resulting variation, which can be printed a®tl wirectly while setting a route. The setter can deviate
from the instructions as she sees fit, or choose to generéferadt variation with new parameters, perhaps combining
other routes or variations.

There has been some academic research on rock climbinganfattis that, while tangential, is largely supportive
of our underlying goal to understand the mechanics and etisthof rock climbing. Substantial work in the exercise
physiology of difficult climbing has produced well define@ithing guidelines for climbers that might be used to
generate route variations aimed at specific training gdid$. [Although largely preliminary, there has been some
effort to build biomechanical models for equilibrium acsjtion while climbing [8]. If expanded, this work may offer
a chance to better model the specific dynamics of climbingemmnts and thereby make use of explicit models
for climbing-related movement in route generation. Altgaty, these explicit mechanical models might be expanded
with cognitive models for how climbers visualize climbs —@mbination of not just movements, but also specific
application of force and effort [11].

2 Route Description Language

The first challenge we face is to come up with a descriptivguage for climbing problems that captures sufficient
detail to produce interesting variations and properlyiltitsie important features of a route while not being so diffic
to use as to form a barrier to use.

In our proposed formalization, we specifically model theussge of the hand movements (L for left and R for
right), but leave out the feet positions, assuming that dersatter could easily choose foothold placements that
match the style of the upper-body movements and produceta vath the desired difficulty. Similarly, the wall's
characteristics (i.e., steepness) are left out. Intervienth experienced routesetters have convinced us thae thes
assumptions are reasonable, since the steepness is @dsselyiated with difficulty, and foot holds can fairly simply
be placed to support desired hand movements [7].

This language certainly succeeds in the goal of being flexids compared to the work in [1], where individual
joint orientations are modeled explicitly, it appears gtmmally free-form. As a result, it is not a chore to trarisera
problem. However, this flexibility comes at the cost of sfieity—routes transcribed with this system might contain
a fair amount of ambiguity. Generally, we would like to thitllat our formalization is successful if it can pass an
acid-test:If a given route A is transcribed by one person, and that teaipsion T is used by another person to set
a second route B, is it true that A is sufficiently similar tolattan experienced climber would recognize them as
being subtle variations on the same premi¥éffether or not our route description language passes this &@s open
guestion.

3 Generating Chaotic Variations

To implement our chaotic variation generator, we followkd same basic design used in [3] and [1]. Given some
reference initial conditiodC;,, variation initial conditionIC,, and sequence of input symbols= {i4,i2,...,in} we
generate a chaotic trajectory for each IC of lengtising a fourth order Runge-Kutta numerical integrator \gitp
sizeh=0.015:

r :{I’l,rz,...,l’n},V:{Vl,Vg,‘.WVn} (1)



We assign each input symbol to a point in the reference t@je@and then
use a Nearest Neighbor Algorithm (NNA) on the variationdcapry, to vary the
input and create the output sequence {01,0;,...,0n}:

0j =ik st. k=argmin{d(vi,rj)} 2

Whered(x,y) is some function that calculates the distance between twdg®
and vy, typically a projected 2-norm (i.e., Euclidean disgn This algorithm is
equivalent to the algorithm presented in [1].

In alignment with the literature, we use the Lorenz attrati@enerate varia-

tions:
X =aly—x)
Y =x(r—2z) -y 3
Z =xy—bz

Fig. 1 Reference (black) and

In [3], Dabby investigated other nonlinear systems as el found the Lorenz Variation  (blue) trajectories  for
system to be the most desirable. Similarly, we have consitleRssler attractor, ICr = (=13, -1252)  (black),
but were unable to convince ourselves that it generated mtgeesting varia- IC, = (-16,-13552) (light blue)
. . . . . L . projected on the X-Z plane. The gray
tions, especially given the short size of our trajectorésich are typically on the |ines show the associations between
order of 30 symbols (moves). After trying several refereli@eand parameters,reference and variation points that
we settled on the chaotic attractor wity = (—13,—12,52), a=16,r =45, and produce the corresponding variation
b = 4. An example trajectory and variation on this system arergin figure 1.  sequence.

When generating variations, we treat each movement in art 8gguence as
an individual symbol. To create more diverse and intergstariations we often use multiple climbs as input. This has
the effect of both increasing the trajectory length, anaiporating more movement types. Generally, we trynix
stylistically similar routes of a compatible difficulty. €hresult is a variation that takes cues from both routes and is
longer than both. In the case that the variation is too lomgife application, the setter can simply select a contiguous
chunk of the variation of an appropriate length, or eliménséctions that are uninteresting. Explicitly addresdimyg t
guestion of how human setters create interesting shoresegs (cruxes), and trying to use this understanding as a
basis for a machine learning solution, is left for later work

A final implementation task is presentation. Clearly, thgpatufrom the variation generator needs to be useful not
just to a researcher, but to a route setter as well. To thisveatiave our variation generator produce a “Chaotic Route
Plan” that reproduces the input routes along with the vianiaand indicates those moves in the variation have been
changed and where they have come from (with respect to tha)iffhis route plan can be printed and then used by
the route setter as they set a route.

4 Spelunking for Initial Conditions

With variation generation software in hand, our next chegke is choosing atC, that results in a variation that is
sufficiently different from the input, while preserving thyle. To this end, we take a brute-force analysis approach.
Given somdC,, we place points on a NxNxN point grid around it, spaced gvenlintervals of sizes. Of the first
seven climbs we transcribed, the mean number of moves is @3cdy each point on this grid is used as a variation
IC to generate a 30 point trajectory. We then study the diffee between the reference trajectory and the variation
trajectory with respect to two metricsffectandchange Effect is the number of symbols that would be changed in
a chaotic variation. Change is the average distance (instefrimdex) that those changed symbols would be moved.
GenerallyN = 100 ands = 0.01 provides us with a sufficiently complex picture of the I@dacape.

Figure 2 plots these two metrics for a specific instance. \Weseg that the effect runs the gamut from no change
(the red region) to having every move changed (the purplemggHowever, at those same points, the change metric
tells a different story—we can see instances where every isaleanged, but only by a small amount (purple effect,



red change) and vice versa, where a small number of movesaee by a large amount. In addition to these extremes,
there are examples of just about every moderate conditibetiween.

5 Experimental Design and Instrument

To analyze the utility of our proposal, we carried out an expent in a large
commercial climbing gym, the BRC in Boulder, Colorado inlabbration with
two expert setters, Tony Yao (T) and Jonathan Siegrist (),the editors of
Climbingmagazine.

After a small pilot study [7], consultation with the editaré Climbing and
the discussion with the setters at the BRC, we decided toosetrbutes total,
two at a grade of 5.10 and two at a grade of 5.11. One of eacle gvadld
be set using our chaotic method and the other two would beraditibnally.
Using a questionnaire (with incentives for participationypded byClimbing),
we would measure the attitude of climbers towards the foute® (them not
knowing which was which or the nature of the survey). As inputhe variation
generator, we picked four existing routes in the gym, twoaaftegrade, which
were well regarded. All four routes were transcribed by Td #men the two
variations were generated by us, usi@y = (—16,—135,52) and the same
IC; as in the pilot. We also chose to skip the first 100 integrat@dtp of the
trajectory to avoid transient behavior.

On September 30, 2009, T and J set the four routes using the pa gen-
erated. Questionnaires were available at the front deskeo€tlimbing gym for
willing participants, and fliers were posted throughoutdlyen to advertise the
opportunity to participate. “

Over the course of approximately two weeks, 44 presumabiguenand ‘
blinded climbers completed questionnaires with meantglgit terms of typical (b) Change
upper-end outdoor climbing grade) of 5.#1blinimum ability 5.10; maximum
5.12d. On average, a participant has been climbing 12 yehrsaaninimum of Fig. 2 Effect and change forlC; =
6 months and maximum of 53 years. Additionally, the averagégpant climbs (_13[_12’ 52), N=100,s=0.11in the
indoors between 2 and 3 times per week. Although we beliggestmple to be Xy pane.
fairly unbiased and representative of the population oborctlimbers as a whole, we cannot claim that this sample
is random and hence our analysis is constrained to makinggians about the preferences of these 44 participants
with regard to the specific four climbs we set.

We constructed a questionnaire to interpret climbers’ grerfces with regard to the routes using standard, well-
accepted techniques for construction of attitude survéyisThis questionnaire is much more comprehensive than
the one used in the pilot study, addressing many of our coscabout scale robustness and consistency, as well as
including redundancy to enable external consistency chekttditional details about this questionnaire are avéglab
in [7].

Each climb was analyzed using a 14-item five-point summaéaiiert scale as well as a single direct ranking ques-
tion. The five-point response format used the standard nsgpoategories (Strongly Agree, Agree, Neither Agree Nor
Disagree, Disagree, and Strongly Disagree), which we hssig@ed ordinal values of (2,1,0,-1,-2) respectively.rFou
of these questions were negatively keyed so that negathponses indicate positive attitudes. These four questions
were inverted in post-processing. Internal consisteneyyais found that items 1, 10, 11, and 9 produced the greatest
inconsistency and were eliminated from analysis, reglitna 10-item summative scale with an overall Cronbach
a = 0.834 (versus 0.708 before censoring) indicating a stronghsistent research instrument [12].

(a) Effect

2 This grade is in the Yosemite Decimal System (YDS) notation, listarts rock climbing routes at 5.0 and has no upper bound. The
system is subjective and consensus based. The decimal indicatkffitidty. At present, the most difficult route that has beemtled is
5.15b.



6 Discussion of Results

Interpreting the summed Likert scale data as ordinal, werepart the median values for the four climbs, which are
given in table 1. Applying a Wilcoxon rank-sum test to the(bstale data we are unable to reject the null hypothesis
that the medians are equal (p-value = 0.5448). In the cadeed.fL1 climbs, however, we are able to reject this null
hypothesis and state that for this sample the differenced®t medians is significant (p-value< 0.05). In other
words, we can state with confidence that climb 3 is preferyetthis sample over climb 4 but we cannot make a similar
claim about the 5.10 climbs, which the participants wereeniedecisive about.

Climb|SettefGraddMedian Summed Likert Valy#ean Pos. Response Atedian RankChaotid
1 J |5.10 6 27.44 3
2 J |5.10 4 25.58 3 X
3 T |511 9 37.23 1 X
4 T |511 4 26.21 3

Table1 Results of BRC Experiment

Because interpreting summative Likert scale data as drdiag be contended by some conservative statistiéjans
we also carried out a similar analysis using a convincingiptinuous variable: percentage of positive (agree or
strongly agree) responses to scale items — an approach aonomoarketing research. Mean values for this vari-
able are in table 1. Performing a Welch 2-sample t-test andéia produces the congruent conclusions to those above:
we are unable to reject the null hypothesis that the 5.10bdilmave equal means but we are able to reject this null
hypothesis with high confidence in the case of the 5.11 climbs

As a final indicator of climb preference, we asked partictpan rank-order the four climbs. The median ranks
(where smaller is better) of the four climbs are listed irgdb We computed the inter-grade coefficient of concordance
using Kendall's method and found values of W = 0.00937 witlajpie = 0.59 for the 5.10 climbs and W = 0.376 with
p-value = 0.000644 for the 5.11 climbs. This further seredsdicate that raters are in agreement on their preference
for climb 3 over climb 4, but are not clearly decided betwekmigs 1 and 2.

It is clear that the participants of the survey preferredhbli3, a climb set with the assistance of our software,
over climb 4, a climb set without it. And, in the case of the(bclimbs, participants may have preferred the climb
set without the software, but not by a significant margins Mvbrth noting that the four input climbs to the variation
generator were transcribed by T. This observation leads tieetoperating hypothesis that the software performs best
when used by the same setter as did the original transariphthough more work is needed to confirm or deny this,
we suspect that a flexible description format like the one axelthosen may allow for setters to use personal idioms
in their descriptions, preventing portability and redacthe effectiveness when these same descriptions are used by
third parties.In sum, we feel confident in making the claim that when usegeply in a scenario where an expert
setter feels the use is appropriate, our software can agsiptoducing a route that is at least as well regarded as
those routes produced without it. And, in some cases, argkohth this study, it is capable of producing routes that
are considered superior by climbers to those set withoustiavare.

7 Conclusion

In this paper, we have applied chaotic variations to a newailenindoor climbing route setting. This new domain
presents its own unique challenges, which we have discu¥¢edhave proposed new ways of exploring the Initial
Condition (IC) space with respect to variation-orientednms. We have validated our ideas in a large study at a
commercial climbing gym and found that our methods are abbessist expert route setters in producing routes that
are at least as well regarded as those set traditionally.

3 Indeed, the interpretation of Likert-scale data is a coimestissue [5, 2]. Although some researchers claim that a properhposed
and applied summative Likert-scale with a sufficient number of duesttan produce interval-scale data, we have erred on theokide
statistical conservativism. To this end, we use non-parametri aest treat the summed scale as ordinal, or, use parametric tesisethat
robust to skew to analyze a continuous variable derived frewtbinal data.



In future work, we are most interested in the prospect ofripemting machine learning into our route generation
system, especially as applied to domain specific technigdest immediately, we are interested in using natural
language processing to parse route descriptions and ssastimput to learning systemsthat might be used to identify
crux sequences or place transition movements betweenrseegpid-urther enhancements and validation will require
the support of the climbing community. To this end, we havit lufunctional prototype of our system that has been
released to the public at http://strangebeta.com, andhesftus of an article in the January 2010 issu€lirhbing
magazine.

There are many open questions and much to be done, but theheralserves two important purposes. Firstly, it
is a large step forward in terms of creating a functional giggie. And secondly, and perhaps most importantly, it has
convinced us and others that chaotic variations are a usafhhique in this domain. We are uncertain whether our
approach to route setting will be widely adopted, in large pacause expert setters enjoy the creative challenges of
setting unique and interesting problems from scratch. Heweave see promising applications when creativity block
strikes or when teaching novice setters.

Overall, we believe that chaotic variations provide greanse in the realm of creative processes. However, in
order to understand how these variations can be put to use snosessfully, we must approach the problem by
adapting existing techniques to new domains, and analythigig efficacy. Indeed, in this work we found substantial
support for the use of chaotic variations in climbing rowg#ing, a result that motivates continued work as well as the
investigation of the application of chaotic variations ther creative tasks.
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