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Active Idle Sleeping Gone

Abstract—Understanding user behavior in wireless environ-
ments is useful for a variety of reasons ranging from the design
of better sleep algorithms for components of mobile devices to :
appropriately provisioning the wireless network itself to better
serve the user. Our work goes in a different direction from prior
work on WLAN modeling and attempts to undersand theprotocol
independent behavior of users by developing packet-level models |
for user activity using diverse training data. Additionally we i i
validate the derived model using a stochastic similarity metric e ot
adapted from human control strategy modeling and present a i
novel way to compare traces using this metric.

Fig. 1: Mapping of IEEE 802.11x actions to our 4-state attivi
. INTRODUCTION model

Understandinguser behaviorin wireless environments is
useful for a variety of reasons ranging from the design of

better sleep algorithms for components of mobile deviceb Slye improved further by a protocol-independent model for-use
as laptops to appropriately provisioning the wireless oetw activity.

itself to better serve the user. Indeed, if we gaedicthow a When deriving a model for any datum, a key task is

user behaves, in t.e.rms of using the wireless network, then Vidation. Many authors validate their model by showing
can atFempt_ a.mbltlous. system-level approaches for reSourr(t‘ﬁprovement from a prior model. Others apply the model to
allocation w'|th|n .the wireless Iocal-greg-network (WLAN a3 specific application and then demonstrate an improvement
well as provide hints to the user device itself on when to POWE ore Because we have no prior model to compare to and
off which components. would prefer to keep our model general so that it can be

. : . oa{hplied to many applications, we used a different approach
usage at coarse time-resolution and in the aggregate [IIpM_ we have adapted a similarity metric used in human-control

re cently,l ther:e have. peen fsomezl attempts LO St#.dy.tgel 1E'g?r'ategy modeling (a sub-field of robotics) to perform valid
time scale characteristics of wireless network traffic ank-1 i, 15 oyr knowledge, this is the first use of this method

I;]z/f_er ﬁ_ehaw;)ur_ [1|9]’ [23] tas WIT” ‘?.S SOIl:tlﬁns to thlzt_lnMrein networking, and we believe it holds promise for general-
Hiiculties of wireless data-coflection at this reso '.@6]' urpose model validation and also traffic comparison and
In some cases, these studies are exploratory [4], in oth racterization

they treat specific extreme cases such as congestion [11] or

interference [21], and some serve to define models for behavi Il. USERMODEL
which can then be re-used [10], [14]. It is this third catggor
which most closely mirrors our approach. The behavior of a wireless user can be simply summarized

A model for user activity is perhaps most applicable twith four states: (1) active, (2) idle, (3) sleeping, or (4)
the areas of QoS profiling and dynamic power-manageme@iene. The active state means that the user is either regeivin
For this reason, literature in both areas have made attem{i) or transmitting (Tx) packets. The idle state may best be
to integrate measurement-driven models. In [8] Irani et ghought of as a “thinking” state where the user is particigat
propose a model which assumes no a-priori information abdgtively but is not transmitting or receiving. The sleeping
user behavior and then performs “online learning”. Our nhodgétate is one where the user device enters power-saving (PS)
could easily be adapted to such an application and th&@de to conserve energy. Finally, a user may enter the gone
improved with learning. Similarly, [13] which presents arstate if she leaves the coverage of an AP or powers off her

elegant trace-derived algorithm for power-managemerghmi device. Figure 1 illustrates this user model. Note thathwit
the exception of a transition from active to gone, which is
This work was funded by NSF awards NeTS-WN:0722008 and 'Tﬁfnpossible in this representation, the four-state digragph
(Medium):0325014. . . RO
Caleb Phillips was employed at Portland State Universitylevtiis work fu”y connected. We chose this formulation for its Slm[IUCI
was conducted. — the least complex formulation we could imagine which still



; ) : . Trace Name| Duration | Location Type | Distinct Users
captured the necessary attr_lbutes of a user’'s behaviotr wit oW 175 hours | Conference o)
respect to the wireless medium. cafe 4 hours Cafeteria 23
In order to compute the transition probabilities between "brarlsll iﬂours Blelia:y gé
H : PR : . : powells ours 0OO0Kstore
states, we discretize the trace data by dividing time interin ug 3hours | Coffee shop 1

vals of lengtht seconds. Any packet transmission/reception
by a user in an interval is treated as a transition to the TABLE I: Summary of Training Data
active state whereas total lack of activity is treated aseeia
transition to idle (if the user was previously idle or ac}iee a

transition to sleep (if the user was previously sleepin@ufé 4 Washington researchers at the SIGCOMM 2004 conference
1 illustrates additional transitions and states relatm@dwer 5.4 is characterized in [16], [22]. All of the traces were
saving. These state transitions can t_)e understoo.d as ®llowy|jected passively, using vicinity sniffing techniques are

Idle users who have put themselves in power-saving mode Qy,ijaple at [2]. Our traces were collected using the VeriéVa
sending a (possibly NULL) frame with the PS bit set to 1 arg/Toq appliance [1], and the UW traces were captured using

labeled sleeping. Periodically sleeping clients will wal®to  commodity hardware. In sum, these captures provide 131 user
receive buffered packets from the access point (by issuing,gces which can be used to derive user models.
PS-POLL frame). During this time they are considered active

as they are receiving. When a client wishes to leave powéy- Data Mapping

saving mode, they send a (possibly NULL) frame with the PS Real wireless traces are necessarily both noisy and incom-
bit set to 0, and at this point they transition to either @&t plete [9], and as such a principle concern is weeding out
idle. Finally, users are considered “gone” if they are idte Grroneous information. Additionally, the majority of owates
sleeping with no activity for more than ten minutes. were collected with hardware at a receive sensitivity defici
For our binning interval, we've selected = 1 seconds. [19]. Because of this, it isn't acceptable to use the 802.11
When selecting a value far two things must be considered.frame check sequence (FCS) alone to identify erroneous
Firstly, we would like to select a small enough value to mod@lames, since frames with a bad FCS in our traces may have
user behavior at a level that is consistant with reactiore$impeen received correctly by the AP (or client). In light ofsthi
as reported by human computer interaction research [15ve used a set of heuristics and filters to classify client MAC
on the order of hundreds of milliseconds to several secon@gldresses and identify those that were not consistant. &l st
Secondly, we would like to select a value big enough to avois{ making a “clean” copy of the trace by eliminating all
artifacts from 802.11 DCF contention. In other words, wames with a bad 802.11 FCS, bad IP header checksum, or
would like to be sure that a user is idle because they hagg: malformed (i.e. packet dissection fails). We use thisdic
nothing to say, and not because they have a full buffer byihce” to generate some statistics about the remainings user
are the loser in a contention window. Due to the possibilitynd then do some final scrubbing: if a given MAC address is
of channel capture, we can't be absolutely certain what a higsponsible for less than 10 IP packets and is responsible fo
enough interval is to allow everyone a chance to speak. Wiss than 40% of all traffic originating from its IP, we coresid
this in mind, we look to the literature for an empirical estt® it bogus and discard all traffic from it. This conservative
at such a value. In [11], Jardosh et al. studied a congesigéthod was quite successful for all of our traces.
network at the 62nd IETF Meeting in Minneapolis, MN. They \We next extract traces for each of the 131 users that
found that the acceptance delay (the time between the figghsist of packet transmit/receive events and PS events. We
transmission and the eventual ACK including intermediat@en split each user trace into two — one in which we only
retries) has a worst-case upper-bound of 0.08s. In fact, th@/e Rx events and one in which we only have Tx events.
mean value is closer to 0.02s, with spikes up to 0.08 onfshe reason we did this is to determine whether (1) there
for the largest frame sizes (greater than 1200 bytes) aRdany correlation between Rx and Tx events and (2) if the
during the most congested periods (when airtime utilizatiaiser models thus derived differ substantially (e.g., if som
is nearly 100%). Given this worst case, we can fit 12.5 sugRers are predominantly receivers whereas others are activ
delays within 1 second. Of our traces (see table I), the maginsmitting as well as receiving). Finally, we split theerss
contending active users we ever see is 8, in the “uw” tracggain by those who use Power-saving (PS) mstiepyusers)
indicating that even in the worst case, we will never get to#hd those who do nosleeplessisers). The rationalle here is
point of total saturation. Given this, we believe that 1s is that those who periodically go to sleep are expected toayspl
a good choice for the binning interval. a significantly altered behaviour (one dictated by the pewer

1. DERIVING USERMODEL PARAMETERS saving algorithm and not by the users’ behavior).

Table | summarizes the traces we used in this work. Follr Derived User Models
of the five traces were collected at locations around Patflan In Table Il, we provide the 4x4 transition probability matri
Oregon in the summer of 2006. Our initial attempt at characes for Rx and Tx in both the sleepy and sleepless categories.
terization of the interesting features of these traces [49). Even by casual inspection, we can see a commonality between
The fifth, “uw”, is a subset of a trace collected by Universitghe various state-transition models. Indeed, if we examine



active idle sleeping | gone active idle sleeping | gone

active | 0.8487 | 0.1508 0 0 active | 0.6707 | 0.1636 | 0.1652 0
idle 0.0468 | 0.9526 0 0.0005 idle 0.0590 | 0.9064 | 0.0343 | 0.0002
sleeping 0 0 0 0 sleeping | 0.0885 | 0.0459 | 0.8651 | 0.0003
gone 0.0009 0 0 0.9994 gone 0.0007 | 0.0001 | 0.0004 | 0.9994

(a) All training data combined, sleepless category, Tx (b) All training data combined, sleepy category, Tx

active idle sleeping | gone active idle sleeping | gone
active | 0.7786 | 0.2211 0 0 active | 0.7254 | 0.1382| 0.1363 0
idle 0.0315 | 0.9678 0 0.0004 idle 0.0443 | 0.9135| 0.0417 | 0.0002
sleeping 0 0 0 0 sleeping | 0.0648 | 0.0589 | 0.8757 | 0.0003
gone 0.0001 | 0.0009 0 0.9994 gone 0.0003 | 0.0005| 0.0004 | 0.9994

(c) All training data combined, sleepless category, Rx (d) All training data combined, sleepy category, Rx

TABLE Il: Model Transition Matrices.

the Rx and Tx matrices for any case, we see that they argensored F;)ortio” (s CD;S”ibF‘,“ion kparz";eﬁtggs A2G°°d0”§§28
. ! t= en. Pareto = 3. = —0.

very similar (e.g., (a), (c) for sleepless and (b), (d) faegly o =14.1917 | KS = 0.9934

with all users combined). In order to quantify this simitgri 6=0 x? = 6879700

we perform the following data analysis. First, we assocate 60 == 86400 | Gen.Paretol k=13 [ A*=—0.0186
numeric value to each of the four states: active — 1, idle — 2, 7% 1:1%1'9 ﬁiggﬁﬁ%
sleeping — 3, gone — 4. Then, for each user, we consider the RX _. . .
and the Tx traces and obtain two vectors containing numbef4BLE IlI: Residing-Time Model Parameters and Statistics.
from this set,S = {1,2,3,4}. We compute a correlation
coefficient of these two vectors. The mean correlation betwe
Rx and Tx states averaged over all 131 users is 0.7609 (median V. VALIDATION OF THE DERIVED USERMODELS
0.9034). Similarly, if we construct a vector of number of ac 5
ets received every = 1s and another for packets transmitted ) ]
for each user and determine a correlation coefficient fosahe [N order to validate our modelwe must show that it
vectors, we obtain a mean value of 0.6357 (median is 0.776wjccessfully describes the data from which it is derivéere
— the correlation is strong in almost all cases. This impli¢¥e take the classic approach of randomly halving the data
that a user's behaviat the level of abstraction of our modelinto @ training set and a test set. The training set is used to
is application independent since users who are predoniynarfepare a model, and then this _model is validated against t.he
receiving data are similar to those who are not. This is aulisefest set. Our full data-set contains 131 users from the 5 site
feature of our model since it allows a high-level compaéfaces- Hence, we randomly select 66 of these to train from,
representation of users. and 65 to test with. The trained model is utilized to produce
Another feature worth noting is that users have a higl@-5 synthetic user traces which can be compared to the test set
probability of staying in the state they are already in. We have adopted a stochastic method of model validation
The probability of staying in the same state (iB, = introduced in dynamic human control strategy modeling .[18]
Prlgis1 = Silg; = Sk) averaged accross all categories id his method of model validation utilizes hidden markov mlode

{P\,P,, Py, P,} = {0.471,0.838,0.305,0.443} for Tx and optimizatio_n via the Baum-Welch expectation-maximizatio
{0.386,0.863,0.301, 0.382} for Rx. This behaviour is easily (EM) algorithm.

translated to the concept of “thinking” time used in interne Given some observation sequen@g of 7; symbols, there
traffic modeling [7]. Users are typically active for a fewmustbe a mode\; = {4;, B;, r;} which optimizesP(;|0;),
seconds, and then idle for several seconds, and then activetiie probability of the model given the observations. Each
a few seconds and so on. This pattern is especially intagesthidden Markov modelX) is defined by a state transition matrix
as current powersaving schemes are agnostic to such behalib, a set of probabilties for each output symbol and each state

. Methodology

(as discussed in [13] and others). (B), and a set of initial probabilitiest{. In our model, state
1 always outputs the symbe] so we setB = I (the identity
C. Modeling Residing Time matrix).

Given transition probabilities as in Table I, we can geteera The Baum-Welch algorithm works by iteratively maximiz-
traces for synthetic users through simple Markov simutatioing P()\;|O;). At some point, the probability will cease to
However, in order to knovhow longto make the traces, weimprove, and since Baum et al. have shown tiRdt\;|O;)
also need a robust model for residing time. We used the datasanecessarily monotonically increasing with succesdiemi
[2], collected over several years at Dartmouth, to fit a maalel tions, whenP(\;|O;) ceases to improve, the model must be
residing time, extending the work of [3], [4], [14]. The résu locally optimized [5].
which is well fitted with a generlized pareto function, is in Nechyba et al. utilize this final probability value to define
Table 1l1. a similarity function:



CDF of model versus training similarity with multiple synthetic user sets
T T T T T

| Po1 P
O'(Oi,Oj) = % (1)

Pyj = P(O;]\;) = P(O;|\)"/" )

Where

Cumulative Probability

As is shown in [18], this metric is quite well-behaved as it
exhibits the following useful properties:

0(0i,0;) = 0(0;,0i) (3) . TR 1
0< 0'(01‘7 OJ) <=1 4) Similarity
O'(Oi,Oj) =1if )\ ~ )\]‘ or O; = Oj (5)

_ ) ) _ Fig. 2: CDFs of similarity values for multiple sets of syntice
To implement this metric, we made use of Kevin Murphy’§;cars as compared to the training data.

hidden Markov model toolbox for Matlab [17] which contains
an implementation of the Baum-Welch algorithiMurphy’s

toolbox implements the Baum-Welch algorithm with a few b) For each set, concatenate the user traces and derive
modifications suggested in [20]. These changes include the the 4x4 transition matrices as well as the steady-
addition of scaling, to avoid underruns for small probapili state probabilities.

values, and a method for optimizing the model over several
observation sequences. This second modification is eabenti
for our ability to compare groups of user traces. Another
practical problem which must be dealt with, is tiRatO; |\ ;)

is often out of the dynamic range of the machine running the
algorithm. The solution is to useL;; = log(P(O0;|)\;)) as the
parameter to optimize. This is problematic for our similari
algorithm, as we need(0O;|);) itself, but must also avoid )
underruns. The solution we used is as follows:

3) Generate 65 synthetic user traces using the above tran-
sition matrices in thesame proportionof sleepy and
sleepless users. The length of each trace is a random
variable selected from the residing time distribution of
Table Il and the starting state is chosen using the steady
state probabilities.

We now run the similarity metric to compare the @5t
settraces with the 65 synthetic user traces. The process
followed is:

a) Each user trace (in each set of 65) is treated as an

LLi; = log(P(0ilA;)) = 10%" = P(Oil;)  (8) independent observation sequertze

We can then make this substitution in 2: b) We run the Baum-Welch EM Algorithm on each
set of 65 to derive two different models (referred
Py = (10ELi)Y/Ti = 1LLi/T: @ to as\ above), one for the synthetic set and one
for the test set.
It is worth noting that initial parameter estimates are se- c) We now compute the value of (equation 1) for
lected at random (as suggested by [20]) and then optimized. these two models.

We use the obvious choice of 4 hidden states, but also triggé run steps 3 and 4 repeatedly (note that in step 3 we
many experiments with 8 states as well (the most used in [1§}obabilistically generate one set of 65 synthetic usérap

to see if there was notable variance — there was not. averages value we obtain is 0.8571 for Tx and 0.9164 for
Rx after 10 repititions. Figure 2 plots the CDFs of these 10
B. Results o values. As we can see, there is a high similarity between
In order to validate our derived user model, we follow théhe derived model and the actual traces for both Rx and Tx
following procedure: (although Rx is generally more similar) which lets us codelu

1) Of the 131 user traces for Tx (the same thing is doriBat the user model derived in step 2 is representative of the
for Rx traces as well) we randomly select 65 user trac&S€r Population.

and call them theest set o V. COMPARISON OFDIFFERENT TRACESWITH EACH
2) The remaining 66 user traces are calledtthaing set OTHER

and are used to train the model: .
Over the past several years, various researchers have col-

3) |F|rst ca;tegorlze the 66 users into sleepy and sleqpzrqq \y AN usage data from a wide variety of domains and
€ss sets. these traces have been analyzed either individually orrimeso
10ur implementation can be downloaded at http://web.cecefdk-singh/ combinations. Whll? the_se forms of ana|y_5|5 and_<_:0m_par|son
software.html are valuable, there is still the larger questiorctzssification



cafe

uw non-uw library | powells ug uw non-uw cafe library | powells ug
uw 1.0000 | 0.9660 | 0.9352 | 0.9503 | 0.3798 | 0.3357 uw 1.0000 | 0.6764 | 0.9971 | 0.9131| 0.2121 | 0.7005
non-uw | 0.9660 | 1.0000 | 0.9231 | 0.9747 | 0.8494 | 0.8857 non-uw | 0.6764 | 1.0000 | 0.9352 | 0.7701| 0.8585 | 0.9594
cafe 0.9352 | 0.9231 | 1.0000 | 0.8820 | 0.7066 | 0.6452 cafe 0.9971 | 0.9352 | 1.0000 | 0.9951| 0.6813 | 0.8201
library | 0.9503 | 0.9747 | 0.8820 | 1.0000 | 0.7578 | 0.8830 library | 0.9131 | 0.7701 | 0.9951 | 1.0000 | 0.4119 | 0.4795
powells | 0.3798 | 0.8494 | 0.7066 | 0.7578 | 1.0000 | 0.8960 powells | 0.2121 | 0.8585 | 0.6813 | 0.4119 | 1.0000 | 0.7864
ug 0.7603 | 0.9803 | 0.7192 | 0.9904 | 0.8933 | 1.0000 ug 0.7005 | 0.9594 | 0.8201 | 0.4795| 0.7864 | 1.0000

Classification is required to tame complexity of analysishas

(a) Tx Similarity

(b) Rx Similarity

TABLE 1V: Similarity between traces. The most similar andidiilar traces traces have been highlighted.

database of traces available grows.

We utilize the technique discussed in the previous section {,

classify our studied traces. The question we ask is, arevbe fi

traces we study in this paper similar or distinct, and by what
degree are they similar or distinct? To answer these qumesstio

we computes values for each pair of traces. The results are
presented in Table IV, where the item “non-uw” consists of a

concatenation of all the traces except the uw trace (we dkd th

(6]

(3]

5]

A. Balachandran, G. V. abd P. Bahl, and P. V. Rangan, “@ti@rizing
user behavior and network performance in a public wireless' a
ACM SIGMETRICSJune 2002, pp. 195 — 205.

] M. Balazinska and P. Castro, “Characterizing mobilitydanetwork

usage in a corporate wireless local-area network,Mi@BISY$ May
2003.

L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximizatio
technique occurring in the statistical analysis of probstii functions
of markov chains, The Annals of Mathematical Statistja®I. 41, no. 1,
pp. 164-171, 1970.

Y.-C. Cheng, J. Bellardo, and P. Benk, “Jigsaw: Solvihg puzzle of
enterprise 802.11 analysis,” WCM SIGCOMM September 2006.

because the uw trace was taken at a conference and genergitlym. E. Crovella and A. Bestavros, “Self-similarity in wdrlwide web

exhibited high load — very different from the remaining four

traces). (8]
The main conclusions we can draw from the data are that

the two traces most unlike one another are the powells and the
uw trace. However, the uw trace is similar to the other thre

traces and almost identical to the cafe trace (0.9352 for Tx

and 0.9971 for Rx). Considering that the uw trace was froRf!

SIGCOMM 2004 where the load was consistently high and

the cafe trace was taken at a lightly loaded coffee shop,[it]

is remarkable that the user models are so similar. The dveral
conclusion we can draw is that one or at most two user models

are representative of all five traces giving us a very comp4dc?]

representation of all this data.

In this paper we developed a wireless user model based[of]

[13]
VI. CONCLUSION

five different traces. The major conclusions we draw are:

1)

2)

3)

By and large, the user models are similar across all fiygs)
traces even though the traces were collected at different
venues (library, coffee shops, conference). This impli
that one or a small set of user models can be used to
describe most WLAN users.

We know that some users are mainly receivers (e.&?]
web users) whereas others transmit as well as recejyg
equally (e.g., p2p applications). However, we note that
at the level of abstraction at which we construct thﬁ9
user models, all these users are similar. This is an
interesting finding because our models are independéfi
of the underlying applications.

The technique we use for model validation as well gs1]
comparison can be generally applied to compare and
classify other traces as well. 22]
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