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Abstract—Understanding user behavior in wireless environ-
ments is useful for a variety of reasons ranging from the design
of better sleep algorithms for components of mobile devices to
appropriately provisioning the wireless network itself to better
serve the user. Our work goes in a different direction from prior
work on WLAN modeling and attempts to undersand theprotocol
independent behavior of users by developing packet-level models
for user activity using diverse training data. Additionally we
validate the derived model using a stochastic similarity metric
adapted from human control strategy modeling and present a
novel way to compare traces using this metric.

I. I NTRODUCTION

Understandinguser behaviorin wireless environments is
useful for a variety of reasons ranging from the design of
better sleep algorithms for components of mobile devices such
as laptops to appropriately provisioning the wireless network
itself to better serve the user. Indeed, if we canpredict how a
user behaves, in terms of using the wireless network, then we
can attempt ambitious system-level approaches for resource
allocation within the wireless local-area-network (WLAN) as
well as provide hints to the user device itself on when to power
off which components.

Much work has been done to characterize wireless network
usage at coarse time-resolution and in the aggregate [12]. More
recently, there have been some attempts to study the fine-
time scale characteristics of wireless network traffic and link-
layer behaviour [19], [22] as well as solutions to the inherent
difficulties of wireless data-collection at this resolution [6].
In some cases, these studies are exploratory [4], in others
they treat specific extreme cases such as congestion [11] or
interference [21], and some serve to define models for behavior
which can then be re-used [10], [14]. It is this third category
which most closely mirrors our approach.

A model for user activity is perhaps most applicable to
the areas of QoS profiling and dynamic power-management.
For this reason, literature in both areas have made attempts
to integrate measurement-driven models. In [8] Irani et al.
propose a model which assumes no a-priori information about
user behavior and then performs “online learning”. Our model
could easily be adapted to such an application and then
improved with learning. Similarly, [13] which presents an
elegant trace-derived algorithm for power-management, might
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Fig. 1: Mapping of IEEE 802.11x actions to our 4-state activity
model.

be improved further by a protocol-independent model for user-
activity.

When deriving a model for any datum, a key task is
validation. Many authors validate their model by showing
improvement from a prior model. Others apply the model to
a specific application and then demonstrate an improvement
there. Because we have no prior model to compare to and
would prefer to keep our model general so that it can be
applied to many applications, we used a different approach
– we have adapted a similarity metric used in human-control
strategy modeling (a sub-field of robotics) to perform valida-
tion. To our knowledge, this is the first use of this method
in networking, and we believe it holds promise for general-
purpose model validation and also traffic comparison and
characterization.

II. U SERMODEL

The behavior of a wireless user can be simply summarized
with four states: (1) active, (2) idle, (3) sleeping, or (4)
gone. The active state means that the user is either receiving
(Rx) or transmitting (Tx) packets. The idle state may best be
thought of as a “thinking” state where the user is participating
actively but is not transmitting or receiving. The sleeping
state is one where the user device enters power-saving (PS)
mode to conserve energy. Finally, a user may enter the gone
state if she leaves the coverage of an AP or powers off her
device. Figure 1 illustrates this user model. Note that, with
the exception of a transition from active to gone, which is
impossible in this representation, the four-state digraphis
fully connected. We chose this formulation for its simplicity
– the least complex formulation we could imagine which still
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captured the necessary attributes of a user’s behaviour with
respect to the wireless medium.

In order to compute the transition probabilities between
states, we discretize the trace data by dividing time into inter-
vals of lengtht seconds. Any packet transmission/reception
by a user in an interval is treated as a transition to the
active state whereas total lack of activity is treated as either a
transition to idle (if the user was previously idle or active) or a
transition to sleep (if the user was previously sleeping). Figure
1 illustrates additional transitions and states relating to power
saving. These state transitions can be understood as follows.
Idle users who have put themselves in power-saving mode by
sending a (possibly NULL) frame with the PS bit set to 1 are
labeled sleeping. Periodically sleeping clients will wakeup to
receive buffered packets from the access point (by issuing a
PS-POLL frame). During this time they are considered active
as they are receiving. When a client wishes to leave power-
saving mode, they send a (possibly NULL) frame with the PS
bit set to 0, and at this point they transition to either active or
idle. Finally, users are considered “gone” if they are idle or
sleeping with no activity for more than ten minutes.

For our binning interval, we’ve selectedt = 1 seconds.
When selecting a value fort, two things must be considered.
Firstly, we would like to select a small enough value to model
user behavior at a level that is consistant with reaction times
as reported by human computer interaction research [15] -
on the order of hundreds of milliseconds to several seconds.
Secondly, we would like to select a value big enough to avoid
artifacts from 802.11 DCF contention. In other words, we
would like to be sure that a user is idle because they have
nothing to say, and not because they have a full buffer but
are the loser in a contention window. Due to the possibility
of channel capture, we can’t be absolutely certain what a big
enough interval is to allow everyone a chance to speak. With
this in mind, we look to the literature for an empirical estimate
at such a value. In [11], Jardosh et al. studied a congested
network at the 62nd IETF Meeting in Minneapolis, MN. They
found that the acceptance delay (the time between the first
transmission and the eventual ACK including intermediate
retries) has a worst-case upper-bound of 0.08s. In fact, the
mean value is closer to 0.02s, with spikes up to 0.08 only
for the largest frame sizes (greater than 1200 bytes) and
during the most congested periods (when airtime utilization
is nearly 100%). Given this worst case, we can fit 12.5 such
delays within 1 second. Of our traces (see table I), the most
contending active users we ever see is 8, in the “uw” trace,
indicating that even in the worst case, we will never get to a
point of total saturation. Given this, we believe thatt = 1s is
a good choice for the binning interval.

III. D ERIVING USERMODEL PARAMETERS

Table I summarizes the traces we used in this work. Four
of the five traces were collected at locations around Portland,
Oregon in the summer of 2006. Our initial attempt at charac-
terization of the interesting features of these traces is in[19].
The fifth, “uw”, is a subset of a trace collected by University

Trace Name Duration Location Type Distinct Users
uw 11.5 hours Conference 42
cafe 4 hours Cafeteria 23

library 4 hours Library 31
powells 4 hours Bookstore 25

ug 3 hours Coffee shop 11

TABLE I: Summary of Training Data

of Washington researchers at the SIGCOMM 2004 conference
and is characterized in [16], [22]. All of the traces were
collected passively, using vicinity sniffing techniques and are
available at [2]. Our traces were collected using the VeriWave
WT20 appliance [1], and the UW traces were captured using
commodity hardware. In sum, these captures provide 131 user-
traces which can be used to derive user models.

A. Data Mapping

Real wireless traces are necessarily both noisy and incom-
plete [9], and as such a principle concern is weeding out
erroneous information. Additionally, the majority of our traces
were collected with hardware at a receive sensitivity deficit
[19]. Because of this, it isn’t acceptable to use the 802.11
frame check sequence (FCS) alone to identify erroneous
frames, since frames with a bad FCS in our traces may have
been received correctly by the AP (or client). In light of this
we used a set of heuristics and filters to classify client MAC
addresses and identify those that were not consistant. We start
by making a “clean” copy of the trace by eliminating all
frames with a bad 802.11 FCS, bad IP header checksum, or
are malformed (i.e. packet dissection fails). We use this “clean
trace” to generate some statistics about the remaining users
and then do some final scrubbing: if a given MAC address is
responsible for less than 10 IP packets and is responsible for
less than 40% of all traffic originating from its IP, we consider
it bogus and discard all traffic from it. This conservative
method was quite successful for all of our traces.

We next extract traces for each of the 131 users that
consist of packet transmit/receive events and PS events. We
then split each user trace into two – one in which we only
have Rx events and one in which we only have Tx events.
The reason we did this is to determine whether (1) there
is any correlation between Rx and Tx events and (2) if the
user models thus derived differ substantially (e.g., if some
users are predominantly receivers whereas others are active in
transmitting as well as receiving). Finally, we split the users
again by those who use Power-saving (PS) mode (sleepyusers)
and those who do not (sleeplessusers). The rationalle here is
that those who periodically go to sleep are expected to display
a significantly altered behaviour (one dictated by the power-
saving algorithm and not by the users’ behavior).

B. Derived User Models

In Table II, we provide the 4x4 transition probability matri-
ces for Rx and Tx in both the sleepy and sleepless categories.
Even by casual inspection, we can see a commonality between
the various state-transition models. Indeed, if we examine
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active idle sleeping gone
active 0.8487 0.1508 0 0
idle 0.0468 0.9526 0 0.0005

sleeping 0 0 0 0
gone 0.0009 0 0 0.9994

(a) All training data combined, sleepless category, Tx

active idle sleeping gone
active 0.6707 0.1636 0.1652 0
idle 0.0590 0.9064 0.0343 0.0002

sleeping 0.0885 0.0459 0.8651 0.0003
gone 0.0007 0.0001 0.0004 0.9994

(b) All training data combined, sleepy category, Tx

active idle sleeping gone
active 0.7786 0.2211 0 0
idle 0.0315 0.9678 0 0.0004

sleeping 0 0 0 0
gone 0.0001 0.0009 0 0.9994

(c) All training data combined, sleepless category, Rx

active idle sleeping gone
active 0.7254 0.1382 0.1363 0
idle 0.0443 0.9135 0.0417 0.0002

sleeping 0.0648 0.0589 0.8757 0.0003
gone 0.0003 0.0005 0.0004 0.9994

(d) All training data combined, sleepy category, Rx

TABLE II: Model Transition Matrices.

the Rx and Tx matrices for any case, we see that they are
very similar (e.g., (a), (c) for sleepless and (b), (d) for sleepy
with all users combined). In order to quantify this similarity
we perform the following data analysis. First, we associatea
numeric value to each of the four states: active – 1, idle – 2,
sleeping – 3, gone – 4. Then, for each user, we consider the Rx
and the Tx traces and obtain two vectors containing numbers
from this set,S = {1, 2, 3, 4}. We compute a correlation
coefficient of these two vectors. The mean correlation between
Rx and Tx states averaged over all 131 users is 0.7609 (median
0.9034). Similarly, if we construct a vector of number of pack-
ets received everyt = 1s and another for packets transmitted
for each user and determine a correlation coefficient for these
vectors, we obtain a mean value of 0.6357 (median is 0.7760)
– the correlation is strong in almost all cases. This implies
that a user’s behaviorat the level of abstraction of our model
is application independent since users who are predominantly
receiving data are similar to those who are not. This is a useful
feature of our model since it allows a high-level compact
representation of users.

Another feature worth noting is that users have a high-
probability of staying in the state they are already in.
The probability of staying in the same state (i.e.̄Pk =
Pr[qi+1 = Sk|qi = Sk]) averaged accross all categories is
{P̄1, P̄2, P̄3, P̄4} = {0.471, 0.838, 0.305, 0.443} for Tx and
{0.386, 0.863, 0.301, 0.382} for Rx. This behaviour is easily
translated to the concept of “thinking” time used in internet
traffic modeling [7]. Users are typically active for a few
seconds, and then idle for several seconds, and then active for
a few seconds and so on. This pattern is especially interesting
as current powersaving schemes are agnostic to such behavior
(as discussed in [13] and others).

C. Modeling Residing Time

Given transition probabilities as in Table II, we can generate
traces for synthetic users through simple Markov simulation.
However, in order to knowhow long to make the traces, we
also need a robust model for residing time. We used the data at
[2], collected over several years at Dartmouth, to fit a modelto
residing time, extending the work of [3], [4], [14]. The result,
which is well fitted with a generlized pareto function, is in
Table III.

Censored Portion (s) Distribution Parameters Goodness
t = 0 Gen. Pareto k = 3.5663 λ2

= −0.0148
σ = 14.1917 KS = 0.9934

θ = 0 χ2
= 6879700

60 ≥ t ≥ 86400 Gen. Pareto k = 1.3 λ2
= −0.0186

σ = 1121.9 KS = 0.7920

θ = 0 χ2
= 3944700

TABLE III: Residing-Time Model Parameters and Statistics.

IV. VALIDATION OF THE DERIVED USERMODELS

A. Methodology

In order to validate our model,we must show that it
successfully describes the data from which it is derived. Here
we take the classic approach of randomly halving the data
into a training set and a test set. The training set is used to
prepare a model, and then this model is validated against the
test set. Our full data-set contains 131 users from the 5 site
traces. Hence, we randomly select 66 of these to train from,
and 65 to test with. The trained model is utilized to produce
65 synthetic user traces which can be compared to the test set.

We have adopted a stochastic method of model validation
introduced in dynamic human control strategy modeling [18].
This method of model validation utilizes hidden markov model
optimization via the Baum-Welch expectation-maximization
(EM) algorithm.

Given some observation sequenceOi of Ti symbols, there
must be a modelλi = {Ai, Bi, πi} which optimizesP (λi|Oi),
the probability of the model given the observations. Each
hidden Markov model (λ) is defined by a state transition matrix
(A), a set of probabilties for each output symbol and each state
(B), and a set of initial probabilities (π). In our model, state
i always outputs the symboli, so we setB = I (the identity
matrix).

The Baum-Welch algorithm works by iteratively maximiz-
ing P (λi|Oi). At some point, the probability will cease to
improve, and since Baum et al. have shown thatP (λi|Oi)
is necessarily monotonically increasing with successive itera-
tions, whenP (λi|Oi) ceases to improve, the model must be
locally optimized [5].

Nechyba et al. utilize this final probability value to define
a similarity function:
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σ(Oi, Oj) =

√

P21P12

P11P22

(1)

Where

Pij = P̂ (Oi|λj) = P (Oi|λj)
1/Ti (2)

As is shown in [18], this metric is quite well-behaved as it
exhibits the following useful properties:

σ(Oi, Oj) = σ(Oj , Oi) (3)

0 < σ(Oi, Oj) <= 1 (4)

σ(Oi, Oj) = 1 if λi ∼ λj or Oi = Oj (5)

To implement this metric, we made use of Kevin Murphy’s
hidden Markov model toolbox for Matlab [17] which contains
an implementation of the Baum-Welch algorithm1. Murphy’s
toolbox implements the Baum-Welch algorithm with a few
modifications suggested in [20]. These changes include the
addition of scaling, to avoid underruns for small probability
values, and a method for optimizing the model over several
observation sequences. This second modification is essential
for our ability to compare groups of user traces. Another
practical problem which must be dealt with, is thatP (Oi|λj)
is often out of the dynamic range of the machine running the
algorithm. The solution is to useLLij = log(P (Oi|λj)) as the
parameter to optimize. This is problematic for our similarity
algorithm, as we needP (Oi|λj) itself, but must also avoid
underruns. The solution we used is as follows:

LLij = log(P (Oi|λj)) ⇒ 10LLij = P (Oi|λj) (6)

We can then make this substitution in 2:

Pij = (10LLij )1/Ti = 10LLij/Ti (7)

It is worth noting that initial parameter estimates are se-
lected at random (as suggested by [20]) and then optimized.
We use the obvious choice of 4 hidden states, but also tried
many experiments with 8 states as well (the most used in [18])
to see if there was notable variance – there was not.

B. Results

In order to validate our derived user model, we follow the
following procedure:

1) Of the 131 user traces for Tx (the same thing is done
for Rx traces as well) we randomly select 65 user traces
and call them thetest set.

2) The remaining 66 user traces are called thetraining set
and are used to train the model:

a) First categorize the 66 users into sleepy and sleep-
less sets.

1Our implementation can be downloaded at http://web.cecs.pdx.edu/∼singh/
software.html
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Fig. 2: CDFs of similarity values for multiple sets of synthetic
users as compared to the training data.

b) For each set, concatenate the user traces and derive
the 4x4 transition matrices as well as the steady-
state probabilities.

3) Generate 65 synthetic user traces using the above tran-
sition matrices in thesame proportionof sleepy and
sleepless users. The length of each trace is a random
variable selected from the residing time distribution of
Table III and the starting state is chosen using the steady
state probabilities.

4) We now run the similarity metric to compare the 65test
set traces with the 65 synthetic user traces. The process
followed is:

a) Each user trace (in each set of 65) is treated as an
independent observation sequenceOi.

b) We run the Baum-Welch EM Algorithm on each
set of 65 to derive two different models (referred
to asλ above), one for the synthetic set and one
for the test set.

c) We now compute the value ofσ (equation 1) for
these two models.

We run steps 3 and 4 repeatedly (note that in step 3 we
probabilistically generate one set of 65 synthetic users).The
averageσ value we obtain is 0.8571 for Tx and 0.9164 for
Rx after 10 repititions. Figure 2 plots the CDFs of these 10
σ values. As we can see, there is a high similarity between
the derived model and the actual traces for both Rx and Tx
(although Rx is generally more similar) which lets us conclude
that the user model derived in step 2 is representative of the
user population.

V. COMPARISON OFDIFFERENTTRACESWITH EACH

OTHER

Over the past several years, various researchers have col-
lected WLAN usage data from a wide variety of domains and
these traces have been analyzed either individually or in some
combinations. While these forms of analysis and comparison
are valuable, there is still the larger question ofclassification.
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uw non-uw cafe library powells ug
uw 1.0000 0.9660 0.9352 0.9503 0.3798 0.3357

non-uw 0.9660 1.0000 0.9231 0.9747 0.8494 0.8857
cafe 0.9352 0.9231 1.0000 0.8820 0.7066 0.6452

library 0.9503 0.9747 0.8820 1.0000 0.7578 0.8830
powells 0.3798 0.8494 0.7066 0.7578 1.0000 0.8960

ug 0.7603 0.9803 0.7192 0.9904 0.8933 1.0000

(a) Tx Similarity

uw non-uw cafe library powells ug
uw 1.0000 0.6764 0.9971 0.9131 0.2121 0.7005

non-uw 0.6764 1.0000 0.9352 0.7701 0.8585 0.9594
cafe 0.9971 0.9352 1.0000 0.9951 0.6813 0.8201

library 0.9131 0.7701 0.9951 1.0000 0.4119 0.4795
powells 0.2121 0.8585 0.6813 0.4119 1.0000 0.7864

ug 0.7005 0.9594 0.8201 0.4795 0.7864 1.0000

(b) Rx Similarity

TABLE IV: Similarity between traces. The most similar and disimilar traces traces have been highlighted.

Classification is required to tame complexity of analysis asthe
database of traces available grows.

We utilize the technique discussed in the previous section to
classify our studied traces. The question we ask is, are the five
traces we study in this paper similar or distinct, and by what
degree are they similar or distinct? To answer these questions,
we computeσ values for each pair of traces. The results are
presented in Table IV, where the item “non-uw” consists of a
concatenation of all the traces except the uw trace (we did this
because the uw trace was taken at a conference and generally
exhibited high load – very different from the remaining four
traces).

The main conclusions we can draw from the data are that
the two traces most unlike one another are the powells and the
uw trace. However, the uw trace is similar to the other three
traces and almost identical to the cafe trace (0.9352 for Tx
and 0.9971 for Rx). Considering that the uw trace was from
SIGCOMM 2004 where the load was consistently high and
the cafe trace was taken at a lightly loaded coffee shop, it
is remarkable that the user models are so similar. The overall
conclusion we can draw is that one or at most two user models
are representative of all five traces giving us a very compact
representation of all this data.

VI. CONCLUSION

In this paper we developed a wireless user model based on
five different traces. The major conclusions we draw are:

1) By and large, the user models are similar across all five
traces even though the traces were collected at different
venues (library, coffee shops, conference). This implies
that one or a small set of user models can be used to
describe most WLAN users.

2) We know that some users are mainly receivers (e.g.,
web users) whereas others transmit as well as receive
equally (e.g., p2p applications). However, we note that
at the level of abstraction at which we construct the
user models, all these users are similar. This is an
interesting finding because our models are independent
of the underlying applications.

3) The technique we use for model validation as well as
comparison can be generally applied to compare and
classify other traces as well.
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