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ABSTRACT
Machine learning methods have shown promise in predicting molecular properties, and given sufficient training data, machine learning
approaches can enable rapid high-throughput virtual screening of large libraries of compounds. Graph-based neural network architectures
have emerged in recent years as the most successful approach for predictions based on molecular structure and have consistently achieved
the best performance on benchmark quantum chemical datasets. However, these models have typically required optimized 3D structural
information for the molecule to achieve the highest accuracy. These 3D geometries are costly to compute for high levels of theory, limiting the
applicability and practicality of machine learning methods in high-throughput screening applications. In this study, we present a new database
of candidate molecules for organic photovoltaic applications, comprising approximately 91 000 unique chemical structures. Compared to
existing datasets, this dataset contains substantially larger molecules (up to 200 atoms) as well as extrapolated properties for long polymer
chains. We show that message-passing neural networks trained with and without 3D structural information for these molecules achieve
similar accuracy, comparable to state-of-the-art methods on existing benchmark datasets. These results therefore emphasize that for larger
molecules with practical applications, near-optimal prediction results can be obtained without using optimized 3D geometry as an input. We
further show that learned molecular representations can be leveraged to reduce the training data required to transfer predictions to a new
density functional theory functional.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5099132

I. INTRODUCTION

High-throughput computational screening offers the ability
to explore large regions of chemical space for particular func-
tionality, greatly enhancing the efficiency of material development
efforts.1–3 Due to its favorable balance between computational cost
and chemical accuracy, density functional theory (DFT) has served
as the workhorse of high-throughput computational material design.
However, while DFT sacrifices chemical accuracy for numerical effi-
ciency, DFT calculations are still too slow to screen the vast com-
binatorial landscape of potential chemical structures.4,5 As an alter-
native to detailed quantum chemistry calculations, fully empirical

machine learning (ML) predictions offer calculation times nearly six
orders of magnitude faster than DFT [O(10−3s) for ML and O(103s)
for DFT on approximately 30 heavy atom molecules]. Machine
learning approaches have recently been effective in reproducing
DFT results given sufficient training data6 and therefore offer an
opportunity to efficiently screen much larger libraries of compounds
without further reduction in chemical fidelity.

Developing ML pipelines for molecular property predic-
tion often involves encoding variable-sized molecules as a finite-
dimensional vector. Traditional approaches use group contribution
methods, molecular fingerprints, and molecular descriptors to con-
vert molecular structures into a suitable input for dense neural
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networks or other ML models.7–13 However, hand-engineered
molecular features may not sufficiently capture all the variabil-
ity present in the space of chemically feasible compounds. Neural
network architectures that operate directly on graph-valued inputs
have been developed,14 allowing “end-to-end” learning on molec-
ular space. In this approach, models simultaneously learn both
how to extract appropriate features as well as how to use these
features to make accurate predictions. End-to-end learning tech-
niques have supplanted traditional methods in image recognition
and computer translation, similar applications where determining
a suitable fixed-size numerical representation of the input data is
difficult.

A number of approaches for end-to-end learning on molecules
have recently been unified into a single theoretical framework
known as Message Passing Neural Networks (MPNNs) and even
more recently as graph networks.15,16 In MPNNs, predictions are
generated from input graphs with node and edge features. The
network comprises a sequence of layers, including a number of
message passing layers and a readout layer. In the message passing
layers, node-level state vectors are updated according to the graph’s
connectivity and the current states of neighboring nodes. Follow-
ing a number of message passing layers, the readout layer generates
a single graph-level vector from node-level states. These networks
have demonstrated best-in-class performance on all properties in
the QM9 computational dataset, a benchmark dataset for molec-
ular property prediction consisting of DFT-optimized 3D coor-
dinates and energies for 134 000 molecules with nine or fewer
heavy atoms.17 Further modifications of the MPNN framework have
demonstrated even higher accuracies.18–21 However, both Gilmer
et al.15 and more recent studies have noted that optimized, equi-
librium 3D molecular geometries were required to achieve opti-
mal accuracy on the QM9 dataset. Since obtaining minimum-
energy atomic coordinates is a numerically intensive task, this
requirement is limiting for applications in high-throughput chem-
ical screening—particularly for molecules with a large number of
atoms.

While effective, deep learning requires large amounts of data
in order to learn appropriate feature representations.22 However,
many applications of deep learning have benefited from transfer
learning, where weights from a neural network trained on a large
dataset are used to initialize weights for a related task with lim-
ited data.23 In this way, the model’s ability to extract useful features
from inputs—learned from the larger dataset—is transferred to the
new regression task, improving predictive accuracy with fewer train-
ing samples. In the molecular space, previous studies have shown
that models are able to successfully predict molecules outside their
training set,24,25 improve their predictive accuracy with additional
training on molecules from a different distribution than the pre-
diction target,26 and estimate nonequilibrium atomic energies at
a higher level of theory by pretraining networks on lower-level
calculations.27

In this study, we apply a MPNN to a newly developed compu-
tational dataset of 91 000 molecules with optoelectronic calculations
for organic photovoltaic (OPV) applications. For OPV applica-
tions, single-molecule electronic properties play a role in determin-
ing overall device efficiency,28–30 and the search space of molecular
structures is sufficiently large that experimental exploration is
impractical.31 Machine learning approaches have previously been

used to predict the properties of candidate OPV materials,32–34 and
a recent study demonstrated that a gap still exists between models
that consider XYZ coordinates and those based only on simplified
molecular-input line-entry system (SMILES) strings.34 While chem-
ical structures of candidate molecules can be rapidly enumerated
(referred to as a molecule’s 2D geometry), calculating atomic posi-
tions at a high level of theory is computationally prohibitive when
screening millions of possible molecules. We therefore design a ML
pipeline to predict optoelectronic properties (e.g., εHOMO, εLUMO,
optical excitation energy) directly from a molecule’s 2D structure,
without requiring 3D optimization using DFT. We demonstrate
that for the types of molecules considered in this study, MPNNs
trained without explicit spatial information are capable of approach-
ing chemical accuracy and show nearly equivalent performance to
models trained with spatial information. Moreover, we show that
weights from models trained on one DFT functional are able to
improve performance on an alternative DFT functional with limited
training data, even when the two target properties are poorly corre-
lated. This application demonstrates that high-throughput screening
of molecular libraries (in the millions of molecules) can be accom-
plished at chemical accuracy quickly with machine learning meth-
ods without the computational burden of DFT structure optimiza-
tion. Additionally, these results indicate that the best neural network
architectures trained on existing small-molecule quantum chemi-
cal datasets may not be optimal when molecular sizes increase. We
therefore make the newly developed OPV dataset considered in this
work (with both 2D and 3D structures) publicly available for future
graph network architecture development.

II. METHODS
A. Dataset preparation

The database considered in this study contains calculations
performed with several DFT functionals and basis sets (denoted
functional/basis below) using the Gaussian 09 electronic structure
package with default settings.35 A web interface to the database
is available.36 The structures consist of combinations of building
blocks, largely single and multiring heterocycles commonly found
in OPV applications.2,28,29 The database is primarily focused on
quantifying the behavior of polymer systems, and therefore, calcu-
lations were performed at a range of oligomer lengths to extrapo-
late to behavior at the polymer limit.37 Two datasets were extracted
from the database by selecting entries performed with the two func-
tional/basis combinations with the greatest number of calculations,
B3LYP/6-31g(d) and CAM-B3LYP/6-31g. Each dataset consists of
monomer structures, with or without 3D structural information,
and associated DFT-calculated optoelectronic properties. Molecu-
lar structures were encoded using SMILES strings,38 and optimized
3D coordinates (when used) were stored in SDF files. The specific
electronic properties we predict are the energy of highest occupied
molecular orbital for the monomer (εHOMO), the lowest unoccu-
pied molecular orbital of the monomer (εLUMO), the first excita-
tion energy of the monomer calculated with time-dependent DFT
(gap), and the spectral overlap (integrated overlap between the opti-
cal absorption spectrum of a dimer and the AM1.5 solar spectrum).
In addition to these properties, we also predict electronic proper-
ties that have been extrapolated to the polymer limit, including the
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polymer εHOMO, polymer εLUMO, polymer gap, and optical εLUMO
(sum of the polymer εHOMO and polymer gap). In addition to
polymers, the database also contains soluble small molecules for
solution-processable OPV devices.39,40 As these molecules are not
polymerized, these entries lack information on extrapolated poly-
mer electronics. These entries were included in the training set but
excluded from the validation and test sets.

In order to screen a larger number of molecules, conforma-
tional sampling of each molecule was not performed; instead, a sin-
gle optimization was performed for each molecule or oligomer. The
primary B3LYP/6-31g(d) dataset consists of approximately 91 000
molecules with unique SMILES strings, approximately 54 000 of
which contain polymer properties. Of these 54 000 with polymer
properties, 5000 were randomly selected for each of the validation
and test sets. Transfer learning was examined with a secondary
dataset consisting of results from the CAM-B3LYP/6-31g functional.
This dataset consists of approximately 32 000 unique molecules,
17 000 of which contain polymer results. From the 17 000 with
polymer properties, 2000 were selected for the validation and test
sets. The remainder of the calculations served as the training set.
When only a subset of training data was considered (i.e., in gen-
erating learning curves), these calculations were randomly selected
from the remainder small molecule and monomer results. Prior to
prediction, each property is scaled to have zero median and unit
inner quartile range (followed by an inverse transformation after
prediction).

Determining an appropriate optimal (or target) error rate
that is representative of a best-case validation loss is an impor-
tant step in optimizing the hyperparameters of a ML pipeline.
In previous studies, target errors were determined based on esti-
mated experimental chemical accuracies for each of the regres-
sion tasks.6,15 However, since many of these parameters are not
directly measurable experimentally, we sought to determine a tar-
get error directly from the data. We therefore used calculation
results from conformational isomers: molecules with identical con-
nectivity but different 3D structure. Due to the size of the consid-
ered molecules, energy minimization routines can often converge to
different lowest-energy states, with slightly altered optoelectronic
properties. Since our model only considers atomic connectivity, it
cannot distinguish between conformational isomers, and predic-
tions for molecules with identical SMILES strings will yield iden-
tical predictions. By iterating over all pairs of conformers in the
dataset, we calculate a mean absolute error (MAE) to establish a rep-
resentative lower limit for predictive accuracy for a model that does
not consider 3D atom positions. For the B3LYP/6-31g(d) dataset,
3225 molecules were present with at least two DFT calculations
for the same 2D structure. These optimal errors are presented in
Table I.

B. Message passing architecture
The molecules considered in this study and used as building

blocks for OPV polymers are relatively large, with a maximum size
of 201 atoms and 424 bonds (including explicit hydrogen atoms).
Inputs to the neural network are generated from the molecules’
SMILES strings and consist of discrete node types, edge types, and
connectivity matrix. Atoms are categorized into discrete types based
on their atomic symbol, degree of bonding, and whether or not they

TABLE I. Mean absolute errors (MAEs) for test set predictions for models trained
on B3LYP/6-31g(d) results. The conformers column (italicized values) reports MAE
between calculations for pairs of conformational isomers, representing an optimal
error rate for models trained on 2D coordinates. Distributions of prediction errors are
shown in Fig. 2.

2D 3D

B3LYP/6-31g(d) Conformers Single-task Multitask DFT UFF

Gap 28.0 meV 36.9 35.4 32.7 45.1
εHOMO 22.0 meV 32.1 29.4 27.0 33.1
εLUMO 25.5 meV 27.9 29.2 24.8 33.9
Spectral overlap 81.3 W/mol 149.3 149.2 96.6 170.0
Polymer εHOMO 37.4 meV 49.1 47.4 56.9 64.8
Polymer εLUMO 45.0 meV 47.8 46.8 56.8 63.0
Polymer gap 46.3 meV 57.1 56.3 69.8 74.3
Pol. optical εLUMO 42.6 meV 47.8 43.9 57.2 60.2

are present in an aromatic ring. Bonds are similarly categorized into
discrete types based on their type (single, double, triple, or aromatic),
conjugation, presence in a ring, and the atom symbols of the two
participating atoms.

A schematic of the neural network is shown in Fig. 1. The
message passing step was implemented using the matrix multiplica-
tion method,15,41 where messages m are passed between neighboring
atoms,

mt+1
v = ∑

w∈N(v)
Aevwh

t
w,

where v is the node index, N(v) are the neighboring nodes, evw is the
bond type, htv is the feature vector for node v at step t, and Aevw is a
learned weight matrix for each bond type.

The update step was implemented as a gated recurrent unit
block,15

ht+1
v = GRU(htv,m

t+1
v ).

Initial atom embeddings, h0
v , are initialized randomly for each atom

class and learned as additional model parameters. The dimension of
the atom state was chosen to be 128, with M = 3 message-passing
layers. The readout function used was similar to the one used by
Duvenaud et al.14 but uses only the final hidden state of the recurrent
atom unit to generate a whole-graph feature vector ŷ,

ŷ =∑
v∈G
σ(WhMv ),

where W is a learned weight matrix. The dimension of ŷ was chosen
to be 1024. This summed fingerprint is then passed through a series
of two fully connected layers with batch normalization and ReLU
activation functions (dimensions 512 and 256, respectively), before
being passed to an output layer corresponding to each property
prediction.

When 3D molecular geometries were considered, the SchNet
structure with edge updates from Jørgensen, Jacobsen, and
Schmidt20 was used. A nearest-neighbor cutoff of 48 was used to
determine the connectivity matrix of passed messages. The dimen-
sion of the atom hidden state was chosen as C = 64, and separate
models were trained for each of the eight target properties. As the
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FIG. 1. Schematic of the message passing framework for 2D structures. Input molecules are labeled according to their atom and bond types. Atom embedding layers are
used to initialize the weights of the message passing layers. Molecule-level feature vectors are generated through an output layer which pools all atoms through summation,
which is then passed to a series of dense layers to generate a final prediction. Dimensions of each layer for the multitask model are shown in gray. For single-task models,
all dimensions are identical except for the final output layer, which has dimension 1.

targets are mainly orbital energies, we similarly use an average in the
readout function. SchNet-like models were trained with the Adam
optimizer42 with an initial learning rate of 1 × 10−4 and a decay rate
of 1 × 10−5 per epoch. The models used a batch size of 32 and were
trained for 500 epochs. The proposed model architecture was also
benchmarked against the QM9 computational dataset (Table S1),
demonstrating that the QM9 prediction task is more difficult with-
out the availability of optimized 3D coordinates. Orbital energies are
predicted to a MAE of 78 and 70 meV for the HOMO and LUMO
energies, compared with 37 and 31 meV for models that consider
3D coordinates. We also note that the proposed model architecture
is optimized for predicting orbital energy and not extrinsic proper-
ties such as total molecule enthalpy and therefore performs poorly
in these regression tasks.

C. Software
Message passing operations were implemented using Keras

and Tensorflow. Scikit-learn was used to scale the prediction tar-
gets, and rdkit was used to encode the atoms and bonds as inte-
ger classes. A Python library used to implement the MPNNs
described in this study is available on Github (github.com/nrel/nfp)
and installable via pip. All datasets, model scripts, and trained
model weights for the models described in Table I are available
at https://cscdata.nrel.gov/#/datasets/ad5d2c9a-af0a-4d72-b943-
1e433d5750d6.

D. Hyperparameter optimization
For the 2D model, model sizes (atom vector dimension,

molecule vector dimension, and number and size of dense layers)
were increased until training errors fell below the target optimal
error rate while the model still fit on a single GPU (Tesla K80) with
a batch size of 100. Models were optimized using the ADAM opti-
mizer. Learning rates were varied between 1 × 10−2 and 1 × 10−5,
with 1 × 10−3 yielding the best result. Explicit learning rate decay
was also noticed to improve optimization; a decay value of 2 × 10−6

each epoch was used. Models were trained for 500 epochs. Methods
for explicit regularization, including dropout and l2 schemes, were
tried but did not decrease the validation loss. All models (includ-
ing refitting weights during transfer learning) used early stopping by
evaluating the validation loss every 10 epochs and using the model
which yielded the lowest validation loss.

III. RESULTS
A. Prediction performance on B3LYP/6-31g(d) results

The largest database consists of calculations performed at the
B3LYP/6-31g(d) level of theory. By comparing calculation results
for molecules with identical SMILES strings but different 3D geome-
tries, a baseline error rate was established for models that only con-
sidered SMILES strings (2D features) as inputs. This error rate was
relatively low: for εHOMO, the mean absolute error (MAE) between
pairs of conformers was 28.0 meV. This value is similar to the test-
set prediction error reached by a machine learning study for similar
molecules using Morgan fingerprints (28 meV)33 and is also lower
than both the target “chemical accuracy” of 43 meV used in the work
of Faber et al.6 and the MAE reached by the current best-performing
model on the QM9 dataset, 36.7 meV.20

Two strategies were used to train models using only 2D coor-
dinates. First, a series of models were trained for each property
(Table I, “2D, single-task”). These models were capable of closely
matching DFT results, with MAEs in orbital energies approximately
10 meV higher than the calculated optimal error. These errors,
32.1 meV for εHOMO, are lower than state-of-the-art models on
the QM9 dataset, suggesting 2D connectivity is sufficient to spec-
ify molecular properties for these types of molecules. Next, a single
model was trained to simultaneously predict all eight target proper-
ties (“2D, multitask”). This model greatly improves prediction speed
while demonstrating similar error rates to the single-task models.

For comparison, models were also trained using DFT-
optimized 3D coordinates. The MPNN structure of these models
was adapted from that of Jørgensen, Jacobsen, and Schmidt,20 and
a single model was trained for each target property. Resulting error
distributions were similar to those of models trained on only 2D
coordinates (Table I, “3D, DFT”; Fig. 2). The similarity in error dis-
tributions between models which consider 3D and 2D further indi-
cates that for the molecules considered in this database, 2D struc-
tural information is sufficient to specify optoelectronic properties.
Errors for the 3D model were smaller for monomer and dimer prop-
erties (gap, εHOMO, εLUMO, spectral overlap) while slightly larger for
extrapolated polymer properties. This effect may suggest that poly-
mer properties are less dependent on the monomer’s precise 3D
configuration.

Approximate 3D coordinates can be computed rapidly using
empirical force fields, for instance, the UFF force field.43 Molecules
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FIG. 2. Distributions of prediction error for held-out data. Distributions of prediction errors for test-set molecules from each model summarized in Table I. Histograms
in differences in calculated values between pairs of conformational isomers are shown in gray. Lines represent kernel density estimates for prediction errors from each
model.

in the dataset were reoptimized using the UFF force field, in order to
determine approximate 3D coordinates at a much lower computa-
tional cost. Models were then retrained using these approximated
geometries. The resulting prediction accuracies were worse than
even the 2D models, indicating that using poor-quality molecular
geometries gives worse results than omitting 3D features (Table I,
“3D, UFF”).

We next explored the effect of training set size on prediction
accuracy for models trained on 2D structures. Repeated optimiza-
tions of the multitask model were performed with subsampled train-
ing data with the validation set, test set, and model architecture
held constant across all experiments. As expected, additional train-
ing data cause out-of-sample predictive performance to improve,
shown in Fig. 3(a). The model’s accuracy asymptotically approaches
the optimal error rate at the largest training set sizes.

B. Transfer learning to an alternate DFT functional
Finally, we examined whether the molecular representations

learned from the large-scale B3LYP/6-31g(d) dataset improved pre-
dictive performance on a related regression. End-to-end learning
models perform two tasks: they extract salient features from the
input data and recombine these features to generate a prediction.
Inside the network, higher level representations of the data are
produced by subsequent layers before ultimately leading to a pre-
dicted value. Transfer learning has previously shown to be effec-
tive in improving the predictive accuracy of models by combining
large amounts of lower-level theory calculations with sparser, more
accurate DFT calculations.27,44 Transferring weights to a new model
from a model trained on a closely correlated target can therefore
preserve much of the logic and higher-level representations of the
previous model. However, even transferring weights from a poorly
correlated target can aid models by preserving low-level features
useful for both targets.

To test the effectiveness of transfer learning with the proposed
MPNN structure, a second, smaller dataset of polymer bandgap val-
ues calculated using the CAM-B3LYP/6-31g functional was used
as a benchmark task. Two models trained on B3LYP/6-31g(d) data
were used to initialize the weights for a new polymer bandgap pre-
diction model: first, a model trained on the same parameter cal-
culated via B3LYP/6-31g(d), and, as a more difficult example, a
model trained on the B3LYP/6-31g(d) monomer bandgap. Correla-
tion coefficients were used as a measure of the similarity between
the old and new prediction targets. The correlation coefficients
between the CAM-B3LYP/6-31g polymer bandgap and B3LYP poly-
mer and monomer bandgaps were 0.93 and 0.48, respectively, for
molecules present in both the CAM-B3LYP/6-31g and B3LYP/6-
31g(d) datasets [Fig. 3(c)].

Test and validation sets of 2000 polymer species were reserved,
and the remaining data were subdivided into training sets of increas-
ing size. All transfer learning strategies were compared against a ref-
erence model with random weight initialization for all layers (i.e., no
transfer learning). The results of all model predictions on the test set
are shown in Fig. 3(b). For each model, performance is compared to
an estimated upper-bound error. For the reference model, this error
was equal to the data’s standard deviation, assuming a worst-case
model would always predict the mean value of the prediction target.
For the models with transferred weights, upper-bound errors were
found assuming new targets were calculated by linearly transform-
ing the old prediction target to best match the new target. The root
mean squared error (RMSE) for these two base-case models was cal-
culated as 360 meV and 150 meV for the B3LYP/6-31g(d) monomer
bandgap and polymer bandgap, respectively. For models with weight
transfer, performance superior to these estimated upper error lim-
its indicates that the model has retained the ability to extract and
process salient features of the molecules related to the new predic-
tion target—rather than simply recalling and rescaling the previously
learned output.
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FIG. 3. Effect of training set size on predictive performance. (a) Training on
B3LYP/6-31g(d). Models gradually approach the optimal error rate as training
set size increases. (b) Transfer learning to predict the polymer bandgap cal-
culated with CAM-B3LYP/6-31g. For each model, performance is compared to
both the optimal error rate and an estimated upper error bound based on a sim-
ple linear model (dotted lines). (c) Illustration of the similarity between old and
new prediction tasks considered during transfer learning. Plot of CAM-B3LYP/6-
31g polymer bandgap (new) vs the single-target properties used for pretraining:
monomer bandgap (left) and polymer bandgap (right). Points represent molecules
with results calculated via both functionals.

For very small training set sizes (on the order of 200 molecules),
models performed near the estimated upper error bound with the
notable exception of the model with weakly correlated transferred
weights, which had a substantially lower test set error than expected.
This result demonstrates that pretraining models on even slightly
related prediction targets could likely improve out-of-sample pre-
diction accuracy when the available data are limited by allowing the
MPNNs to learn useful molecular features. As the available training
data are increased, both models with transferred weights demon-
strate a concomitant decrease in their test set error below their esti-
mated upper bound error. In particular, the model with weights
transferred from the strongly correlated task shows superior per-
formance at all training set sizes, requiring nearly an order of mag-
nitude less data to reach RMSE values of 100 meV. At the largest
training set sizes, all three models approach the optimal error rate
(estimated through conformers with duplicated SMILES strings),
indicating that knowledge encapsulated in transferred weights is
eventually replaced with knowledge gained through the new training
data.

IV. CONCLUSIONS
In this study, we have demonstrated near-equivalent predic-

tion accuracies from both 2D and 3D structural features in MPNN

architectures, both of which closely approach the estimated 2D
lower-bound error from conformational optimization. While stud-
ies on the QM9 dataset have shown that 3D coordinates are required
for accurate predictions, using these data as inputs mandates that full
DFT calculations still be performed for each molecule. The neces-
sity of 3D coordinates for the QM9 dataset might be explained by
the substantially smaller molecules considered (≤29 atoms, includ-
ing hydrogen atoms) when compared with our newly generated
OPV database (≤201 atoms). Additionally, since they are exhaus-
tively generated according to computational rules, molecules in
QM9 frequently contain complex structural features that might
only be captured through the explicit use of 3D coordinates.
Our new public database might therefore serve as a more rep-
resentative molecular learning benchmark for electronic structure
calculations.

We have shown that a deep neural network pretrained on one
DFT functional was able to improve predictive performance on a
related DFT functional, especially in the case of limited data. This
performance improvement is dependent on the correlation between
tasks, but even weights transferred from a network trained on a
weakly correlated task were able to improve accuracy. These results
help confirm the immense value of machine learning approaches
in scientific domains both to increase the fidelity of DFT simula-
tions and to augment them, allowing for high throughput screening
and guided search. Future work will therefore explore the ability
of pretrained neural networks to improve prediction accuracy on
experimental data and other important targets with limited available
data.

SUPPLEMENTARY MATERIAL

See supplementary material for one table and one figure.
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