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H I G H L I G H T S  

• Planning and operation of an electrified airport shuttle system. 
• Event-driven simulation model is used for the evaluation of system performance. 
• Data-driven simulation-based optimization for the planning of electric airport shuttle systems. 
• Extensive numerical studies based on real-world operation data.  
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A B S T R A C T   

Many airports are adopting battery electric buses in their shuttle fleets due to concerns over air quality and 
regulations. This study proposes a simulation-based optimization modeling framework to help airport shuttle 
operators effectively deploy electric buses. We evaluated a planned airport electric shuttle system with an event- 
driven simulator. Empirical data collected from existing systems were used to drive the simulations. We then 
proposed a simulation-based optimization model to determine the battery capacity, charging power, and number 
of chargers so that predefined objective(s) (e.g., minimizing total capital cost, minimizing emissions) are opti
mized. Compared to existing studies, the primary contribution of the proposed method is that it can model the 
real-world stochastic nature of operations in an electric bus system with much higher fidelity. To demonstrate the 
proposed modeling framework, we study a real-world shuttle system at the Dallas-Fort Worth International 
Airport, and present extensive numerical studies. When considering partial fleet electrification, the model can 
provide a set of Pareto optimal solutions. When considering full fleet electrification, the optimal solution requires 
a 50-kWh battery capacity and four 210-kW chargers, resulting in a total capital cost of $26,744,000. The results 
demonstrate that the proposed modeling framework can effectively optimize the planning of electric airport 
shuttle systems with partial or full fleet electrification.   

1. Introduction 

Vehicle electrification plays a key role in decarbonizing trans
portation systems. With the rapid development of battery [1,2], 
charging [3,4,5], and vehicle technologies [6,7,8,9,10], as well as 

government support, the market share of electric vehicles is increasing 
globally. In particular, electric buses (e-buses) have enjoyed fast- 
growing adoption in recent years due to their potential benefits in 
abating local emissions, improving fuel economy, and reducing oil 
dependence [11,12,13]. China has led the way in adopting e-buses. With 
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more than 400,000 e-buses, China dominates 99 % of the e-bus market 
[14]. Shenzhen, a city in China, replaced all its diesel buses with 16,359 
e-buses by the end of 2017 [13]. In Europe, the number of e-buses 
increased from around 200 to 2,200 vehicles from 2014 to 2019 [15]. 
Since 2016, the U.S. Federal Transit Administration (FTA) has provided 
a total of $409 million to support e-bus program projects [16]. The total 
annual funding increased from $55 million in 2016 to $130 million in 
2020, as shown in Fig. 1. Many bus agencies in the United States have set 
ambitious goals of full fleet electrification in the coming decade. 

Due to the limitations of battery and charging technologies, how
ever, e-buses have limited driving ranges and long charging times 
[17,18]. Compared with conventional diesel buses, which have an 
average range of 690 miles [19] and can easily finish a whole day’s 
operation without refueling, e-buses usually do not have sufficient range 
for typical bus routes (300 to 400 miles). In addition, recharging battery 
e-buses usually takes much longer than refueling diesel buses. The need 
to evaluate the feasibility, reliability, and charging requirements of e- 
buses, and the absence of an effective decision support tool, bring great 
planning and operational challenges to transit agencies. 

To design an e-bus system, bus agencies need to strategically deter
mine the fleet size, the onboard battery capacity/driving range for the e- 
buses, and the needed charging infrastructure. The problem of planning 
e-bus systems has drawn increasing interest from researchers in recent 
years. Currently, there are three types of charging methods for e-buses: 
station-based charging, wireless lane-based charging, and battery 
swapping [20,21]. An et al. [22] investigated the battery-swapping fa
cility planning problem for e-buses. The authors developed a two-stage 
stochastic programming model to determine the optimal deployment of 
battery-swapping stations and the assignment of depleted e-buses to 
battery-swapping stations. A real-world bus network in Melbourne, 
Australia, was used to verify the feasibility of the proposed model. 
Although battery swapping can instantly replace depleted batteries on e- 
buses with fully charged ones and thus produce a minimal impact on bus 
schedules, the high construction costs and land use requirements pro
hibit wide adoption of battery-swapping stations [17]. The deployment 
of en-route wireless lane-based charging infrastructure for e-buses has 
been studied by Ko and Jang [23], Jang et al. [24], Hwang et al. [25], 
Liu et al. [26], Liu and Song [27], and Alwesabi et al. [28]. Ko and Jang 
[23] and Jang et al. [24] considered only a single bus route and tried to 
determine the optimal location of wireless lane-based charging infra
structure and the needed onboard battery size. Hwang et al. [25] and Liu 
et al. [26] further studied the tradeoff between the cost of wireless 
charging infrastructure and the cost of onboard batteries for general bus 
systems with multiple routes. To hedge against charging time and en
ergy consumption uncertainty, Liu and Song [27] developed a robust 
optimization model for the planning of wireless charging e-bus systems. 

Alwesabi et al. [28] extended this work by considering e-bus fleet sizing. 
The above studies focus on minimizing the total system monetary cost. 
Bi et al. [29] addressed wireless charger deployment for an e-bus 
network using a multi-objective life cycle optimization approach, which 
considers the economic, environmental, and energy burdens. Bi et al. 
[30] compared life cycle energy and greenhouse gas emissions of 
wireless vs plug-in charging for an e-bus system, and found that the 
wireless charging system consumed 0.3 % less energy and emitted 0.5 % 
less greenhouse gases than plug-in charging over the total life cycle in 
the base case analysis. For a comprehensive review of en-route wireless 
charging technology and its application in e-bus systems, readers are 
referred to Bi et al. [31] and Jang [32]. Although wireless lane-based 
charging provides a flexible in-motion charging capability, it has not 
been widely applied to e-bus systems due to the high construction costs 
associated with installing wireless charging facilities underneath road
ways [17]. Currently, station-based charging is the most widely used 
charging method for e-buses. Electric vehicle chargers can be divided 
into level 1, level 2, and level 3 based on their charging powers. Table 1 
shows the characteristics of the three different power levels [33]. Level 1 
and level 2 chargers are usually alternating current (AC) chargers that 
directly connect the electrical grid to an electric vehicle’s onboard 
charger; the onboard charger then converts the received AC into direct 
current (DC) for the battery. Level 3 chargers are usually DC chargers 
that directly convert AC to DC, then “bypass” an electric vehicle’s on
board charger and send the DC to the battery. For e-buses, AC slow 
chargers can be used at bus depots for overnight charging, and DC fast 
chargers can be installed at terminals or bus stops, enabling opportunity 
charging. Kunith et al. [11] proposed a mixed-integer linear program to 
optimize the deployment of charging stations and the onboard battery 
sizes of e-buses. Liu et al. [18] extended this work by developing a robust 
optimization model to consider the uncertainty of bus energy con
sumption. An [17] developed a stochastic integer program to optimize 
charging facility location and fleet size for e-bus systems considering 
stochastic charging demand. In contrast to Kunith et al. [11] and Liu 
et al. [18], who considered installing fast charging stations at candidate 
bus stops and terminals, An [17] focused on deploying regular charging 
stations at bus terminals or depots. Rogge et al. [34] addressed the e-bus 
depot charger deployment problem considering the scheduling of bat
tery e-buses and the fleet composition. 

In this paper, we focus on the planning problem of e-bus systems 
within an airport. Airport bus systems play a key role in the safe and 
efficient transportation of passengers, flight personnel, and airport em
ployees. Motivated by concerns about air quality impacts and regula
tions, many airports are transitioning vehicles and equipment to 
technologies that reduce emissions, such as battery electric vehicles 
[35]. For instance, California has required thirteen state airports to 
exclusively operate zero-emission vehicles by December 31, 2035. 
However, studies addressing the planning problem of electric airport bus 
systems are sparse. To the best of our knowledge, Helber et al. [12] is the 
only relevant study. Helber et al. [12] developed a binary linear pro
gram to optimize the deployment of wireless lane-based charging 
infrastructure for electric airport buses. The proposed model minimizes 
the total capital cost of the charging infrastructure while ensuring that, 
for each bus service trip, the amount of energy charged to the e-bus is 
enough to serve the trip. Numerical experiments based on a small 
fictitious airport bus network were conducted to demonstrate the 

Fig. 1. The total funding and number of funded states from the U.S. FTA for e- 
bus projects. 

Table 1 
Charging Power Levels.  

Power 
Level 

Charger 
Location 

Typical 
Use 

Typical 
Power 

Charging 
Time 

1 On board Home 2 kW 4–11 h 
2 On board Public 20 kW 1–4 h 
3 Off board DC fast 100 kW less than30 

min  

Z. Liu et al.                                                                                                                                                                                                                                       



Applied Energy 332 (2023) 120483

3

effectiveness of the proposed model. In contrast to Helber et al. [12], the 
current paper considers station-based charging because it is currently 
the most widely used charging method for e-buses. Compared to wireless 
lane-based charging, the key challenge for modeling station-based 
charging systems is the need to consider the charging capacity and 
detailed queuing behavior of e-buses at charging stations. Note that 
there is no fundamental difference between planning airport e-bus sys
tems and other e-bus systems in the existing research. Therefore, exist
ing planning methods for e-bus systems proposed in the literature might 
also be applicable to airport e-bus systems. However, existing studies 
usually optimize e-bus system design using pure mathematical pro
grams, which tend to simplify the operation of an e-bus system for model 
tractability. For instance, existing studies typically neglect bus capacity, 
passenger queuing behavior at bus stops, and e-bus queuing behavior at 
charging stations. Compared to city bus systems, airport shuttle systems 
usually have a much simpler structure and passenger demands, which 
makes it possible to use high-fidelity simulation to model airport shuttle 
systems. 

This paper develops a simulation-based optimization framework to 
address the planning problem of electric airport bus systems. The 
modeling framework has a two-level structure. In the lower level, we use 
an event-driven simulation model, Airport Shuttle Planning and 
Improved Routing Event-driven Simulation (ASPIRES), which was 
developed by our research team [36,37], to evaluate the expected per
formance of a designed electric airport shuttle system using detailed 
day-to-day operations under stochastic traffic conditions, passenger 
demand, and vehicle energy consumption. In the upper level, we opti
mize the design of the electric airport shuttle system based on certain 
predefined objectives. The modeling framework can consider different 
design variables, including onboard battery size, number of chargers, 
and charging power for chargers. It can consider both full fleet electri
fication and partial fleet electrification. 

The primary contribution of the present study is threefold. First, this 
work informs the development of e-bus charging features in ASPIRES for 
the charging station planning problem for an electric airport bus system. 
Second, compared to the aforementioned studies, which optimize e-bus 
system design using pure mathematical programs, the proposed 
simulation-based optimization framework can model the real-world 
stochastic nature of e-bus system operations with much higher fidel
ity. For instance, the simulation model can explicitly consider the 
vehicle capacity, stochastic passenger arrival, stochastic energy con
sumption, and stochastic travel time of e-buses, as well as the charging 
capacity and detailed queuing behavior at bus stops and charging sta
tions. It is challenging to consider all those features with high fidelity in 
pure mathematical programs while ensuring the computational tracta
bility. Third, this study applies the proposed modeling framework to a 
real-world airport shuttle bus system at Dallas-Fort Worth International 
Airport (DFW). We utilize real-world operation data from the shuttle 
system that connects the five terminals and the rental car center at DFW. 
Based on the real-world data, we conduct extensive numerical studies to 
demonstrate the effectiveness of the proposed modeling framework. 

The remainder of this paper is structured as follows. Section 2 defines 
the charging station planning problem for an electric airport shuttle bus 
system. Section 3 presents a simulation-based optimization modeling 
framework to address the planning problem. To make this paper self- 
contained, we also present descriptions of the ASPIRES simulation 
model. Numerical studies based on real-world operation data from the 
DFW airport bus system are provided in Section 4. Finally, in Section 5, 
conclusions from this work are drawn. 

2. Problem description 

Services provided by bus systems within an airport include airside 
transfer, terminal transfer, car parking transfer, and rental car center 
transfer. The bus system at DFW that connects the five terminals (Ter
minals A, B, C, D, and E) and the rental car center is used as an example 

to define the charging station planning problem. Fig. 2 shows the 
configuration of the five terminals at DFW. The rental car center is 
located about 2.5 miles south of Terminal E. A fleet of 46 buses is used to 
transport passengers between the five terminals and the rental car 
center. Service trips include R-A-R, R-B-R, R-C-R, R-D-R, R-E-R, R-A-B-R, 
R-B-A-R, and R-C-D-R, where R represents the rental car center and A, B, 
C, D, and E represent the respective terminals. Terminals A–D each have 
two bus stops, while Terminal E has three stops. The rental car center has 
a drop-off location and five pickup locations corresponding to the five 
terminals. Assuming operators of the bus system plan to convert the fleet 
into battery e-buses, the problem to solve is determining the installation 
of charging stations, their charging power, and the capacity of the on
board bus batteries. The performance of the designed e-bus system can 
be evaluated using different criteria, including the total capital invest
ment, the average passenger waiting time, and (when the fleet is only 
partially electrified) the total miles traveled by nonelectric vehicles. 
Although the airport bus system only has seven types of trips and 
seventeen bus stops, it is nontrivial to model the system and evaluate its 
operation. First, the airport bus system has no predefined timetable. It 
only has a rough service target for headway (the time between bus ar
rivals at stops), and it might modify its service based on real-time pas
senger demand. Second, the travel time and energy consumption of 
buses are uncertain due to the highly stochastic traffic conditions and 
passenger demand at the airport. Third, without a timetable and with 
highly stochastic charging demand, it is difficult to model the queuing 
process at charging stations. 

Major assumptions included in the model are listed below. Note that 
the problem identified in this paper is part of an ongoing collaboration 
between NREL and DFW. These assumptions have been chosen based on 
meetings and conversations with the bus operation staff at DFW.  

(1) The electric airport shuttle system will operate according to the 
previously established service frequency requirements. 

Fig. 2. The layout of the DFW airport.  
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(2) All the e-buses are homogeneous and have the same driving 
range.  

(3) The energy recharged is the product of charging power, charging 
efficiency, and charging duration.  

(4) The chargers installed at the charging station are homogeneous, 
and each charger has one outlet. 

3. Simulation-Based optimization 

In this section, we first introduce ASPIRES, the event-driven simu
lation model developed by our research team at NREL (see [36] for the 
source code). Based on the simulation model, we then propose a 
simulation-based optimization model to address the strategic planning 
problem for an electric airport shuttle bus system. As mentioned in the 
introduction, the modeling framework has a two-level structure. Fig. 3 
shows a schematic of the two-level structure. In the lower level, we use 
ASPIRES to simulate the detailed day-to-day operations of a designed 
electric airport shuttle system under stochastic traffic conditions, pas
senger demand, and vehicle energy consumption and evaluate the ex
pected performance of the system. In the upper level, we optimize the 
shuttle system based on certain predefined objectives concerning costs 
and emissions. 

3.1. ASPIRES simulation model 

Most traffic simulation packages have hard-to-calibrate problems. 
The ASPIRES simulation model tries to address this issue. ASPIRES is 
mainly driven by empirical distributions of real-world data. Instead of 
calibrating the simulation, we use the data to drive the simulation. With 
more data, the simulation will be more realistic. The ASPIRES simula
tion model provides fast simulations of the airport shuttle service. It has 
been optimized for runtime speed; simulating one day of shuttle oper
ations takes around one second. The ability to execute fast simulations 
enables the exploration of many different infrastructure configurations 
and operational policies under a wide range of different scenarios. 

ASPIRES can simulate travel times, dwell times, and passenger ar
rivals using empirical distributions derived from real data that capture 
the stochastic nature of DFW’s rental car center shuttle bus operations. 
Additionally, ASPIRES can collect relevant data that can be used for 
system analysis. The simulation outputs show passenger statistics, 
shuttle statistics, and charging station statistics. The passenger statistics 
include the waiting time of each passenger, the queue length of each 
stop at any time, the total travel time from one stop to another, and the 
number passengers left after each shuttle bus pickup. The shuttle sta
tistics include a record of routes driven, the number of passengers on
board at any time, the distance traveled up until any time, the energy 
consumed until any time, and the location of each bus at any time. The 
charging station statistics record the number of chargers being used at 
any time of the day. ASPIRES has been adopted by Sigler et al. [38] in 
route optimization for energy efficient airport shuttle operations. 

ASPIRES was developed using SimPy, a discrete event simulation 
package for Python [39]. ASPIRES uses three sets of SimPy resources, 
one for the buses, one for the stops, and one for the charging stations. 
The passengers arrive at the stops following time-dependent Poisson 

processes; the passengers’ mean arrival times are derived from real- 
world data. The shuttle buses move along the routes they serve. At 
each stop, a shuttle drops off some passengers and picks up others until 
all the passengers have been picked up or the bus becomes full. In a 
given day, different numbers of buses are needed at different times, and 
the bus routes may vary (e.g., at night, before returning back to the 
rental car center, a bus may serve two terminals, whereas daytime buses 
might serve only one terminal in a route). Because of this, the simulation 
has a dispatcher who manages the number of buses on different routes. 
Below, we discuss the development of the event-based simulation 
model. 

3.1.1. Stop-Based vehicle and passenger movement 
An airport bus system can be represented abstractly as a directed 

graph G(N,A), where the node set N represents the set of bus stops, and 
the arc set A represents the set of links connecting two bus stops. Let M 
represent the set of all buses. For each bus m ∈ M, let Lm denote the set of 
trips or routes executed by the bus within a certain period of observa
tion. For the bus system connecting the five terminals and the rental car 
center at DFW, each trip is defined as a journey from the rental car center 
to one or two terminals and back to the rental car center. For each trip 
l ∈ Lm, let Nl and Al denote the set of nodes and arcs along the trip, 
respectively. 

For each bus stop n ∈ N, a variable αn(t) is used to track the total 
accumulative number of passengers waiting at the stop until time t. Note 
that t = 0 denotes the simulation starting time. As mentioned previ
ously, passenger arrival at a bus stop is modeled as a Poisson process. 
The headway between two passenger arrival events at a stop can thus be 
specified by an exponential distribution [40]. Suppose a passenger ar
rives at a bus stop n ∈ N at time t0 and the passenger arrival rate is 
denoted by λ(t0). The time interval for the next passenger arrival can be 
calculated as − 1

λ(t0) lnr, where r is a uniformly distributed random number 
on (0,1). We can thus compute the time t when the next passenger ar
rives and calculate the next αn(t) as follows: 

αn

(

t0 +
− 1

λ(t0)
lnr

)

= αn(t0)+ 1 ∀n ∈ N (1) 

For each bus stop n ∈ N, another variable βn(t) is introduced to track 
the total accumulative number of passengers picked up at the stop until 
time t. When a bus arrives at a stop, it first drops off the passengers 
whose destination is the stop and then picks up the passengers waiting at 
the stop. The total number of onboard passengers should not exceed the 
bus capacity. With αn(t) and βn(t) respectively tracking the passenger 
arrival and passenger departure at a bus stop n ∈ N, the waiting time of 
each passenger can be calculated, assuming people get on buses in the 
order they arrive at the bus stop. 

For each trip l ∈ Lm served by a bus m ∈ M, let τa, l, m and ea, l, m 

respectively denote the travel time and energy consumption on each arc 
a ∈ Al, and let τn,l, m and en, l, m respectively denote the dwell time and 
energy consumption at each stop n ∈ Nl. Data describing τa, l, m, ea, l, m, 
τn,l, m, and en, l, m can be collected from real-world operations. If variables 
tarr
n,l, m and tdep

n,l, m are introduced to track the time when a bus m arrives at 
and departures from stop n of trip l, we have: 

tdep
n,l, m = tarr

n,l, m + τn,l, m ∀m ∈ M, l ∈ Lm, n ∈ Nl. (2) 

If n+
a and n−

a represent the head and tail nodes of arc a, respectively, 
we also have: 

tarr
n−a ,l, m = tdep

n+a ,l, m + τa, l, m ∀m ∈ M, l ∈ Lm, a ∈ Al. (3) 

Let γoff
n,l, m, and γon

n,l, m denote the number of passengers getting off and 

on the bus at each stop n ∈ Nl. If harr
n,l, m and hdep

n,l, m denote the number of 
onboard passengers when a bus m arrives at and departs from stop n on 
trip l, we have: 

Fig. 3. The two-level structure of the simulation-based optimization.  
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hdep
n,l, m = harr

n,l, m − γoff
n,l, m + γon

n,l, m ∀m ∈ M, l ∈ Lm, n ∈ Nl (4)  

γon
n,l,m = min

{
hmax −

(
harr

n,l,m − γoff
n,l,m

)
, αn

(
tdep
n,l,m

)
− βn

(
tarr
n,l,m

)}
∀m ∈ M, l

∈ Lm, n ∈ Nl

(5)  

βn

(
tdep
n,l,m

)
= βn

(
tarr
n,l,m

)
+ γon

n,l,m ∀m ∈ M, l ∈ Lm, n ∈ Nl (6) 

where hmax represents the maximum capacity of a bus. The remaining 

space of vehicle m is given by hmax −
(

harr
n,l, m − γoff

n,l, m

)
, and the number of 

passengers waiting at the stop is given by αn

(
tdep
n,l, m

)
− βn

(
tarr
n,l, m

)
. 

3.1.2. Development of electric bus charging features 
Let emax denote the battery capacity of an e-bus. If variables sarr

n,l, m and 

sdep
n,l, m are introduced to track the battery state of charge (SoC) (a value 

between 0 and 1) for e-bus m when it arrives at and departs from stop n 
when serving trip l, we have: 

emaxsdep
n,l, m = emaxsarr

n,l, m − en, l, m ∀m ∈ M, l ∈ Lm, n ∈ Nl (7)  

emaxsarr
n−a ,l, m = emaxsdep

n+a ,l, m − ea, l, m ∀m ∈ M, l ∈ Lm, a ∈ Al. (8) 

For the bus system connecting the five terminals and the rental car 
center at DFW, the charging station can be installed at the rental car 
center or other predetermined locations near the rental car center (e.g., 
the bus depot, or the existing bus refueling station). When an e-bus 
returns to the rental car center after finishing a service loop, its battery 
SoC will be checked. If the expected battery SoC of an e-bus after its next 
trip will fall below a prespecified lower bound, the e-bus will go to the 
charging station to get charged. When the number of e-buses is greater 
than the number of chargers installed at the charging station, charging 
queues might form at the charging station. Charging services are 
assumed to follow the first-come, first-served rule. The chargers at the 
charging station are modeled as resources that can be used by a limited 
number of e-buses. The total number of occupied and available chargers 
at the charging station is tracked over time. Let d denote the graph node 
that represents the charging station. Let σ and δ denote the charging 
power and charging efficiency of the chargers, respectively. Let sarr

d,l,m and 
tarr
d,l, m represent the battery SoC and time when bus m arrives at the 

charging station after finishing trip l, respectively. Let τwaiting
d,l, m and τcharging

d,l, m 

be the waiting time before getting an available charger and the charging 
time, respectively. Let sdep

d,l,m and tdep
d,l, m denote the battery SoC and the time 

when the bus leaves the charging station, respectively. Finally, let sup 

denote the safety upper bound for battery SoC. We then have the 
following relationships: 

sdep
d,l,m = sup ∀m ∈ M, l ∈ Lm (9)  

τcharging
d,l, m =

emax
(

sdep
d,l,m − sarr

d,l,m

)

σδ
∀m ∈ M, l ∈ Lm (10)  

tdep
d,l, m = tarr

d,l, m + τwaiting
d,l, m + τcharging

d,l, m ∀m ∈ M, l ∈ Lm. (11) 

To model the bus to service trip assignment, we divide each day into 
24 h and collect the service frequency for each type of trip. Based on the 
service frequency and the time needed to finish each type of trip, the 
number of vehicles needed to serve each type of trip within each hour 
can be estimated, and then buses can be assigned to each type of trip 
accordingly. Due to changes in service frequency, a bus might switch 
from one type of trip to another or go idle. 

To summarize, we modeled the following events for the operation of 
an airport bus system: (1) passengers accumulate at bus stops, (2) a bus 
starts a new service trip after finishing the last trip, (3) a bus moves from 

one stop to the next stop, (4) a bus drops off and picks up passengers at a 
stop, (5) an e-bus drives to a charging station, (6) an e-bus waits for an 
available charging station, (7) an e-bus finishes charging at a charging 
station, (8) a bus is idling and waiting for the next trip request, (9) a 
charger at the bus depot is occupied, and (10) a charger at the bus depot 
is released and becomes available. Key status variables of an airport bus 
system are tracked and updated using Eqs. (1)–(11). In the ASPIRES 
simulation model, parameters about travel times, dwell times, passenger 
arrivals, and vehicle energy consumption are randomly draw from 
empirical distributions derived from real-world data. The simulation 
model can provide stochastic results for each run, which captures the 
stochastic nature of the shuttle system operation in the airport area. 

3.2. Simulation-Based optimization model 

Using the ASPIRES model to evaluate the performance of a designed 
electric airport bus system, we further develop a simulation-based 
optimization model to address the charging station planning problem 
for the bus system. Let x denote the number of chargers to be installed. 
The strategic planning problem for the electric airport shuttle bus system 
can be formulated as the following optimization problem: 

min
x,σ,emax

f(x, σ, emax)

subject to 

x ∈ {1, 2,⋯, |M| } (12)  

σ ∈ {σ1, σ2,⋯, σk1} (13)  

emax ∈
{

emax
1 , emax

2 ,⋯, emax
k2

}
(14)  

ϕ(x, σ, emax) ≥ 0, (15) 

where {σ1, σ2, ⋯, σk1} represent k1 different candidate levels of 

charging power for the e-bus chargers, 
{

emax
1 , emax

2 , ⋯, emax
k2

}
represent k2 

different bus battery capacities, and functions f(x, σ, emax) and ϕ(x, σ,
emax) are evaluated using the simulation model. Constraints (12)–(14) 
specify the possible values of x, σ, and emax, respectively. Constraint (15) 
defines a set of constraints to be specified by decision-makers. Objective 
function f(x, σ, emax) can be a single scalar objective or a vector of two or 
more objectives. 

When the bus fleet is partially electrified, we aim to minimize miles 
traveled by nonelectric buses and the total capital cost while ensuring 
constraints that specify an acceptable level of service are met. Specif
ically, the objective function. 

min
x,σ,emax

f(x, σ, emax) and constraint ϕ(x, σ, emax) ≥ 0 are defined as fol

lows: 

min
x,σ,emax

f(x, σ, emax) = min
x,σ,emax

⎧
⎨

⎩

x*Pcharger(σ) + PBEB(emax)*NBEB
∑

n∈{1,2,⋯,NOther}

Qn(x, σ, emax)

ϕ(x, σ, emax) = Wmax − W(x, σ, emax) ≥ 0,

where Pcharger(σ) is the price of a charger with charging power σ, 
PBEB(emax) is the cost of an e-bus with battery capacity emax, NBEB is the 
number of e-buses, NOther is the number of nonelectric buses, Qn(x, σ,
emax) is the total miles traveled by nonelectric bus n ∈ {1, 2,⋯,NOther}, 
Wmax is the maximum allowable passenger mean waiting time, and W(x,
σ, emax) is the passenger waiting time with design (x, σ, emax). Note that 
Qn(x, σ, emax) and W(x, σ, emax) will be collected from the simulation. 
Further, x*Pcharger(σ)+PBEB(emax)*NBEB defines the total capital cost of 
chargers and e-buses, 

∑
n∈{1,2,⋯,NOther}Qn(x, σ, emax) is the total miles 

traveled by nonelectric buses, and constraint Wmax − W(x, σ, emax) ≥ 0 
ensures that the passenger mean waiting time is smaller than the 
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allowed value. 
When the whole bus fleet is electrified, we minimize a single 

objective—total capital cost—while ensuring acceptable passenger 
waiting time. Specifically, the objective function. 

min
x,σ,emax

f(x, σ, emax) and constraint ϕ(x, σ, emax) ≥ 0 are defined as fol

lows: 

min
x,σ,emax

f(x, σ, emax) = min
x,σ,emax

x*Pcharger(σ)+PBEB(emax)*NBEB  

ϕ(x, σ, emax) = Wmax − W(x, σ, emax) ≥ 0 

Although we consider the fleet size to be a given parameter in this 
paper, for our simulation-based optimization framework, the number of 
e-buses can be another system design variable, denoted by 
y ∈

{
Nmin,Nmin +1,Nmin +1,⋯Nmax

}
, where Nmin and Nmax are the mini

mal and maximal fleet sizes, respectively. Then, the domain for the 
number of chargers can be updated to x ∈ {1,2,⋯, y}, and the decision 
variable vector will become (y, x, σ, emax). We can use the simulation to 
evaluate the performance of each bus system design (y, x, σ, emax)

* during 
operation, and we can use the simulation-based optimization method to 
optimize the system design, including the number of e-buses. 

The above problem is a two-level problem. The lower level is a 
simulation model used to evaluate the expected performance of a 
designed electric airport shuttle system using detailed day-to-day op
erations under stochastic traffic conditions, passenger demand, and 
vehicle energy consumption. The upper-level problem must decide the 
values for charging station deployment (x ∈ {1,2,⋯, |M| } and 
σ ∈

{
σ1, σ2, ⋯, σk1

}
) and the battery capacity for the fleet’s e-buses 

(emax ∈
{

emax
1 , emax

2 , ⋯, emax
k2

}
). A brute force enumeration can be used to 

solve the problem when the total number of potential solutions (i.e., 
|M| × k1 × k2) can be evaluated using the simulation model within an 
acceptable amount of time. Although brute force enumeration can 
ensure a global optimal solution, this approach is not always possible 
when a large decision space is being considered. This paper develops a 
genetic-algorithm-based solution procedure (see Fig. 4) to solve the 
problem when the decision space is too large for complete enumeration. 
The solution procedure includes two main modules: a simulation mod
ule and a genetic algorithm module. The simulation module evaluates 
the performance of each solution. The genetic algorithm module is used 
to find near-optimum solutions. 

Essentially, the genetic-algorithm-based approach encodes the de
cision variables of the upper-level problem (i.e., the values for charging 
station deployment and the battery capacity) into a number of chro
mosomes (i.e., strings). Then, the fitness value of each chromosome is 
calculated using the simulation model. Because selection, reproduction, 
crossover, and mutation operations are conducted iteratively from the 
genetic algorithm, selective pressure drives the population to more 

effective regions of the search space. After a given number of iterations, 
the genetic algorithm terminates and returns the best identified 
solutions. 

1) Initialization: Randomly generate pop size chromosomes, where 
pop size denotes the population size. Each chromosome C = (c1, c2, c3)

represents a solution (x, σ, emax), where ci represents the ith decision 
variable. 

2) Evaluation Function: Each chromosome’s likelihood of reproduc
tion is measured using an evaluation function. The negative of the 
objective function minus a penalty term is used as the evaluation func
tion, i.e., Eval(C) = − f(x, σ, emax) − Gϕ(x, σ, emax), where Eval(C) repre
sents the evaluation function and G is a large enough constant to 
penalize the inequality constraint ϕ(x, σ, emax) ≥ 0. Note that the best 
solution has the maximal value of Eval(C). 

3) Selection Process: The roulette wheel selection method is used to 
select the next generation of chromosomes. Based on the evaluation 
function values, we order the chromosomes and define p0 = 0, pi =
∑i

j=1Eval
(
Cj
)
, and i = 1, 2,⋯, pop size. Then, we can select a chromo

some by first randomly generating a number ϖ ∈ (0, ppop size

]
and then 

selecting the chromosome Ci such that ϖ ∈ (pi− 1,pi]. 
4) Crossover Operation: Let Prob co denote the crossover probability. 

We first randomly generate a real number ϖ ∈ [0,1] and pick two parent 
chromosomes Ci and Cj. If ϖ < Prob co, we produce two new chromo
somes using Ci and Cj via the crossover operator. Because each chro
mosome has three variables, we randomly switch one variable value 
from the two parent chromosomes. For instance, if Ci = (c1, c2, c3) and 
Cj = (ĉ1 , ĉ2 , ĉ3), two new chromosomes CChild1 = (c1, ĉ2 , ĉ3 ) and 
CChild2 = (c1, ĉ2 , ĉ3 ) can be created. 

5) Mutation Operation: Let Prob mt denote the mutation probability. 
We first randomly generate a real number ϖ ∈ [0,1] and pick one 
chromosome Ci. If ϖ < Prob mt, we randomly select a variable of the 
chromosome and replace it with a randomly generated new variable 
value. 

The aforementioned process is outlined below. Note that pop_size and 
max_generation can be chosen based on available computing resources 
and time. For the choice of Prob_co and Prob_mt, readers are referred to 
the review paper by Patil and Pawar [41] for relevant discussions. 

Step 0: Define the fitness function and specify the following pa
rameters for the genetic algorithm: population size pop size, maximum 
number of generations max generation, crossover probability Prob co, 
and mutation probability Prob mt. 

Step 1: Initialize the population by randomly generating pop size 
chromosomes and set the generation index to g = 1. 

Step 2: Run the simulation model for each chromosome and calcu
late the fitness accordingly. Reproduce the population based on the 
distribution of fitness values. 

Step 3: Conduct the crossover and mutation operations. 
Step 4: If g = max generation, terminate and obtain the optimal so

lution(s). Else, set g = g+1 and go to Step 2. 

4. Numerical studies 

To test the proposed simulation-based design framework, we carry 
out numerical studies based on the real-world airport bus system that 
connects the five terminals and the rental car center at DFW. We first 
present and discuss the real-world operation data from DFW that was 
used. Then, in Section 4.2, we demonstrate the simulation model using a 
predetermined system design. Section 4.2 shows some key outputs that 
can be extracted from the simulation model, including total miles 
traveled by e-buses and compressed natural gas (CNG) buses, SoC profile 
of each e-bus, charger usage profile, and passenger waiting time. Section 
4.2 also shows the potential impact of battery size, charging power, and 
number of chargers on the total miles traveled by CNG buses for the 
scenario with 10 e-buses. Section 4.2 demonstrates how the lower-level 

Fig. 4. Procedure for the genetic-algorithm-based approach.  
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simulation model can be used to simulate the detailed day-to-day op
erations of a designed electric airport shuttle system under stochastic 
traffic conditions, passenger demand, and vehicle energy consumption, 
and to evaluate the expected performance of the system. Lastly, in 
Section 4.3, we demonstrate how the two-level simulation-based opti
mization model can be used to optimize the system design. 

Note that the problem identified in this paper is part of an ongoing 
collaboration between NREL and DFW. The assumptions and numerical 
study scenarios used here were chosen based on meetings and conver
sations with the bus operation staff at DFW. 

4.1. Data description 

This study primarily uses two sets of data. First, in collaboration with 
DFW, NREL researchers use vehicle data loggers to collect controller 
area network (CAN) bus data from the airport shuttles [42]. The data 
provides information on vehicle position, speed, fuel rate, engine power 
output, and other vehicle parameters at a 1 Hz frequency, giving a 
second-by-second snapshot of the energy consumption and operational 
state of the vehicle. Second, Spatial Positioning on Transit (SPOT) data is 
collected by DFW. SPOT is ETA Transit System’s computer-aided 
dispatch/automatic vehicle location (CAD/AVL) system. It collects and 
reports detailed bus operation data that can be used to analyze bus 
ridership changes, public site usage, passenger demands at each stop, 
whether buses are operating on time, whether vehicles are running 
routes as prescribed, etc. 

The CAN data includes second-by-second geolocation information 
for each monitored bus, from which we can extract the dwell time at 
each stop as well as the distance and travel time of each trip segment. 
CAN data also includes detailed fuel consumption information for each 
trip segment. For instance, Fig. 5(a) shows the distribution of bus travel 
time, and Fig. 5(b) shows the distribution of bus energy consumption for 
the trip segment from the rental car center to Terminal E. Considering 
the time-varying passenger demand and traffic conditions, we group 
CAN data points based on the time of day and the day of the week. For 
each day of the week, we divide the 24 h into six equal-length intervals 
and group the data points together for each interval. 

SPOT data provides detailed information about the time of events, 
stop locations, boarding and alighting, and the trip type for each bus. In 
this study, we collected SPOT data from December 1, 2019, to February 
17, 2020. We extracted fleet size, service frequency, and passenger 
boarding and alighting data at each stop from the SPOT data. Fig. 6 
shows the hourly number of shuttle visits for each terminal over one 
representative day. One can observe from Fig. 6 that the bus service 
frequency varies significantly over the day; this is due to the time- 
varying flight traffic and the resulting passenger demand. Therefore, 
we extracted the average service frequency for each hour in each day of 
the week. Similarly, passenger boarding and alighting for each bus stop 

can also be extracted from the SPOT data. For instance, Fig. 7 shows the 
average boarding data for the first stop in Terminal E on Monday. 

4.2. Simulation experiments 

Currently, the shuttle system connecting the five terminals and the 
rental car center at DFW runs on compressed natural gas (CNG). If we 
assume that DFW plans to convert 10 CNG buses into battery e-buses, 

Fig. 5. Empirical distribution of (a) bus travel time and (b) bus energy consumption for the trip segment from the rental car center to Terminal E.  

Fig. 6. Hourly number of shuttle visits for each terminal over the course of 
a day. 

Fig. 7. Boarding data for the first stop in Terminal E on Monday.  

Z. Liu et al.                                                                                                                                                                                                                                       



Applied Energy 332 (2023) 120483

8

then using the proposed simulation model, we can evaluate the perfor
mance of the new mixed-fleet bus system. Further, let us assume the 10 
battery e-buses have a battery capacity of 100 kWh, with upper and 
lower SoC bounds being 85 % and 20 %. Suppose 10 chargers with a 
charging power of 100 kW and a charging efficiency of 91.4 % [43] will 
be installed at a charging station that is 2.5 miles away from the rental 
car center. We simulated the operations of this bus system for 29 days, 
with the first day being a warm-up day for the simulation. Using a 2.4- 
GHz Mac computer with 16 GB of RAM, it took 125.1 s to run the 
simulation. 

Over the 28-day operation period, 392,681 passengers were served 
by the shuttle bus system. The mean waiting time for those passengers 
was 343.1 s. The whole bus fleet traveled 214,822.8 total miles, with 
166,432.1 miles from CNG buses and 48,390.7 miles from e-buses. Fig. 8 
shows a sample SoC profile of an e-bus during the first week of the 
simulation (with the warm-up day excluded). Throughout the five days, 
the SoC of the e-bus was roughly within the specified range (i.e., 20 % to 
85 %). Due to stochastic energy consumption, the 20 % battery SoC 
lower bound was violated once between hours 100 and 125. This result 
demonstrates the necessity of a safe battery SoC lower bound. Fig. 9 
shows the charger usage profiles for the 28 days and for the first day. The 
maximum number of chargers in use throughout the 28 days was five, 
which implies that we might be able to remove five chargers without 
impacting the operation of the 10 e-buses. 

The bus system under the status quo scenario, i.e., with no e-buses, 
was also simulated. Fig. 10 compares the passenger waiting time dis
tribution between the status quo scenario and the scenario with 10 e- 
buses. One can observe that the 10 deployed e-buses have a negligible 
impact on passenger waiting times. This result is expected because the 
studied bus system has a fleet size of 46, but only 29 buses are needed to 
ensure the maximum service frequency found in the SPOT data. Even 
when all 10 e-buses need to go charge, the bus system still has enough 
buses to ensure normal operations. 

An e-bus with a small battery capacity will frequently need to use the 
charging station and thus might waste a lot of time traveling to and from 
the charging station. To test the impact of battery capacity on the per
formance of the bus system, we ran the simulation model with the 
battery capacity ranging from 50 kWh to 300 kWh, with a step size of 50 
kWh. The average daily miles traveled by CNG buses are used to mea
sure the performance of the bus system. They can be considered a gross 
indicator of greenhouse gas emissions. Fig. 11 shows the average daily 
miles traveled by CNG buses in the fleet with different battery capacities 
for the e-buses. For the most part, the average daily miles traveled by 
CNG buses decreases as battery capacity for the e-buses increases. This 

result is expected because with larger battery capacities, e-buses require 
fewer charging events during operation and waste less time traveling to 
and from the charging station; consequently, they can replace more 
miles traveled by CNG buses. Note that the average daily miles traveled 
by CNG buses increases slightly when the battery capacity increases 
from 200 kWh to 250 kWh; this is likely due to the stochasticity of the 
simulation. 

When charging power is low, e-buses need to spend a long time 
charging and thus have a low service time. Moreover, when the number 
of chargers is limited and the charging power is low, a charging queue 
might form at the charging station. To test the impact of the number of 
chargers and the charging power, we ran the simulation model with the 
number of chargers ranging from one to 10 (with a step size of one), the 
charging power ranging from 20 kW to 100 kW (with a step size of 20 
kW), and a battery capacity of 100 kWh. Fig. 12 shows the average daily 
miles driven by all CNG buses with different numbers of chargers and 
different charging powers. From Fig. 12, two interesting observations 
can be made. First, when the number of chargers is fixed, the average 
daily miles traveled by CNG buses decreases with increasing charging 
power. Second, for a given charging power, the average daily miles 
traveled by CNG buses tends to decrease as the number of chargers in
creases. Take the 40-kW case as an example. The average daily miles 
traveled by CNG buses first decreases as the number of chargers in
creases from one to four, then fluctuates within a small range when the 
number of chargers increases from four to 10. These results are expected 
because with more chargers and higher charging power, e-buses can 
reduce their charging and queueing times at the charging station and 
replace more miles traveled by CNG buses. For a certain charging power, 
when the number of chargers increases to a certain critical value, further 
increasing the number of chargers will no longer significantly reduce the 
miles traveled by CNG buses. The critical number of chargers is 7 for the 
20-kW case, 4 for the 40-kW case, 4 for the 60-kW case, 3 for the 80-kW 
case, and 3 for the 100-kW case. The fluctuation in the average daily 
miles traveled by CNG buses after the number of chargers reaches the 
critical value is most likely due to the stochastic features of the 
simulation. 

4.3. System optimization 

In this section, we optimize the design of the airport bus system using 
the simulation-based optimization model. In Section 4.3.1, we consider 
a scenario where 10 CNG buses are replaced by battery e-buses. Then, in 
Section 4.3.2, we investigate the impact of the distance between the 
rental car center and the charging station. Section 4.3.3 considers 

Fig. 8. Sample SoC profile of an e-bus.  
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another two scenarios where 20 and 30 CNG buses are replaced by e- 
buses. In Section 4.3.4, we introduce a flexible charging strategy and test 
its potential impact on optimal system design. Lastly, in Section 4.3.5, 
we consider a full fleet electrification scenario and use the genetic- 

algorithm-based solution procedure discussed in Section 3.2 to solve 
the system optimization problem. 

Fig. 9. Charger usage profile.  

Fig. 10. Histograms of passenger waiting times with zero and 10 e-buses.  

Fig. 11. Average daily miles traveled by CNG buses given different e-bus battery capacities.  
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4.3.1. Scenario with 10 electric buses 
In this section, we assume that DFW plans to convert 10 CNG buses 

into battery e-buses. As shown in Section 4.2, using larger battery ca
pacities and installing more high-power chargers can reduce the miles 
traveled by CNG buses. However, using large battery capacities and 
installing many high-power chargers requires significant capital cost. 
Therefore, a tradeoff must be made between the capital cost of deploying 
e-buses and the bus system performance. To help DFW determine the 
best tradeoff, we consider a bi-objective version of the optimization 
problem presented in Section 3.2, where the two objectives are to 
minimize the capital cost and minimize the miles traveled by CNG buses. 
The second objective can be viewed as minimizing greenhouse gas 
emissions. 

The charger cost is set to $350/kW [44]. The charging efficiency of 
the chargers is set to 91.4 % [43]. The distance between the rental car 
center and the charging station is set to 2.5 miles. The vehicle cost of an 

e-bus (excluding the battery) is set to $550,000, and the battery cost is 
set to $500/kWh, including midlife replacement [45]. Because 10 e- 
buses will be deployed, the maximum number of chargers is 10, i.e., 
x ∈ {1,2,⋯,10}. We consider 35 possible charging powers from 10 kW 
to 350 kW, with a step size of 10 kW, i.e., σ ∈ {10,20, ⋯,350}. For 
battery capacity, we consider 12 possible choices from 50 kWh to 600 
kWh, with a step size of 50 kWh, i.e., emax ∈ {50,100, ⋯, 600}. In total, 
there are 4,200 combinations of the number of chargers, charging 
powers, and battery capacities. Using Message Passing Interface (MPI), a 
standardized and portable message-passing standard designed to func
tion on parallel computing architectures, on NREL’s high-performance 
computing system, Eagle, we ran all 4,200 simulations in parallel 
using 600 processors. Running all the simulations and collecting the 
miles traveled by CNG buses took approximately 20 min. 

Fig. 13 shows the capital cost and average daily miles traveled by 
CNG buses for both nondominated (Pareto optimal) solutions (marked 

Fig. 12. Average daily miles traveled by CNG buses with different numbers of chargers and different charging powers.  

Fig. 13. The capital cost and average daily miles traveled by CNG buses for nondominated and dominated solutions.  

Z. Liu et al.                                                                                                                                                                                                                                       



Applied Energy 332 (2023) 120483

11

using a red “+”) and dominated solutions (marked using a blue “•”). As 
shown in the figure, the Pareto optimal solutions define a boundary 
beyond which neither of the two objectives (reducing average daily 
miles traveled by CNG buses and reducing the total capital cost) can be 
further improved without compromising the other objective. These 
Pareto optimal solutions can offer useful guidance to DFW for deploying 
the 10 e-buses to achieve a balanced tradeoff between the two objec
tives. Four representative solutions are highlighted in Fig. 13. The cor
responding battery capacities, charging powers, and numbers of 
chargers are reported in Table 2. 

Solution 1 provides a design with minimal capital cost and maximal 
miles traveled by CNG buses. With only one 10-kW charger deployed, 
the 10 e-buses will spend a lot of time waiting and charging at the 
charging station. In addition, with a small 50-kWh battery capacity, the 
e-buses will require frequent charging during operation and will waste 
lots of time traveling between the rental car center and the charging 
station. Among all the Pareto optimal solutions, solution 4 provides a 
design with the minimal miles traveled by CNG buses and the maximal 
capital cost. Using a 500-kWh battery capacity and four 330-kW char
gers, e-buses can be efficiently utilized to reduce the miles traveled by 
CNG buses. Compared to solutions 1 and 4, solutions 2 and 3 provide a 
more balanced tradeoff between the two objectives. 

From solution 1 to solution 2, although the battery capacity and the 
number of chargers remains unchanged, the increase of charging power 
from 10 kW to 230 kW significantly reduces the queuing and charging 
time of e-buses at the charging station. Consequently, the average daily 
miles traveled by CNG buses drops from 7,563 to 6,204, a reduction of 
20 %, while the capital cost only increases from $5,753,500 to 
$5,830,500, an increase of 1 %. 

Compared to solution 2, solution 3 utilizes a larger battery capacity 
to reduce the deadhead travel between the rental car center and the 
charging station. Additionally, it installs more high-power chargers to 
further reduce the queuing and charging time. From solution 2 to so
lution 3, the average daily miles traveled by CNG buses drops from 6,204 
to 5,353, a reduction of 14 %, while the capital cost increases from 
$5,830,500 to $6,488,000, an increase of 11 %. 

From solution 3 to solution 4, the average daily miles traveled by 
CNG buses can further be reduced from 5,353 to 5,015, a reduction of 6 
%. However, this improvement requires a capital cost increase from 
$6,488,000 to $8,462,000, an increase of 30 %. 

4.3.2. Impact of the distance to the charging station 
If the charging station is far from the rental car center, the deadhead 

travel of e-buses between the charging station and the rental car center 
will waste service time and energy. To investigate the impact of the 
distance between the charging station and the rental car center on the 
performance of a bus system design, we performed a sensitivity analysis 
by solving the above bi-objective optimization problem with the dis
tance ranging from zero miles to 10 miles with a step size of 2.5 miles. 
Note that the zero-mile case means that chargers are installed at the 
rental car center. Fig. 14 shows the Pareto frontiers with different dis
tances between the charging station and the rental car center. 

One can observe from Fig. 14 that with the decrease in the distance 
between the charging station and the rental car center, the corre
sponding Pareto frontier moves toward the lower left. The closer the 

Pareto frontier gets to the lower-left corner (i.e., smaller capital cost and 
average daily miles traveled by CNG buses) the better; thus, the results 
imply that bus system designs with shorter distances between the 
charging station and the rental car center can achieve better 
performance. 

4.3.3. Scenarios with 20 and 30 electric buses 
We further consider another two scenarios where 20 and 30 CNG 

buses are replaced by battery e-buses. The maximum number of chargers 
for each scenario equals the number of e-buses. The distance between 
the rental car center and the charging station is set to 2.5 miles. In 
addition to the two objectives, i.e., minimizing the capital cost and 
minimizing the miles traveled by CNG buses, we also consider a 
constraint that ensures the mean waiting time for passengers using the 
bus system meets the existing level of service. Under the status quo 
scenario, i.e., with no e-buses, the mean waiting time for passengers is 
355 s. Thus, a feasible solution should ensure that passengers’ mean 
waiting time for the designed bus system is no greater than the 355 s. 

Fig. 15 and Fig. 16 show the capital cost and average daily miles 
traveled by CNG buses for both nondominated (Pareto optimal) solu
tions (marked using a red “+”) and dominated solutions (marked using a 
blue “•”) under the 20 and 30 e-bus scenarios, respectively. Two extreme 
solutions are highlighted in the corresponding figure for each scenario. 
For both scenarios, solution 1 is the Pareto optimal solution with the 
minimum capital cost, and solution 2 is the Pareto optimal solution with 
the minimum CNG bus miles. Table 3 and Table 4 provide detailed in
formation about the two extreme solutions for the 20 and 30 e-bus 
scenarios, respectively. One can observe from Fig. 13, Fig. 15, and 
Fig. 16 that the three Pareto frontiers have a similar shape. From solu
tion 1 in Table 3, one can observe that, under the scenario with 20 e- 
buses, the bus system can still ensure that passengers’ waiting time is 
less than 355 s, even with only one 10-kW charger installed. However, 
under the scenario with 30 e-buses, at least one 330-kW charger is 
required to ensure the feasibility of the design (i.e., a waiting time of less 
than 355 s), as shown by solution 1 in Table 4. Solution 2 for the scenario 
with 20 e-buses (Table 3) shows that with more capital investment, the 
average daily miles traveled by CNG buses can be reduced to 2,582 
miles. For the scenario with 30 e-buses, solution 2 (Table 4) shows that 
the average daily miles traveled by CNG buses can be further reduced to 
505 miles. 

4.3.4. Flexible charging strategy 
In the simulation results presented in Section 4.2 and Sections 

4.3.1–4.3.3, we assumed that an e-bus would charge its battery when its 
SoC fell below a prespecified lower bound. In this section, we consider a 
more flexible charging strategy. Here, we assume chargers are installed 
at the rental car center. For this flexible charging strategy, we define 
another threshold for battery SoC, termed the flexible charging threshold, 
that specifies the charging behavior of each e-bus as follows. When an e- 
bus returns to the rental car center, it will check its battery SoC; if the 
expected battery SoC after finishing the next trip falls below the SoC 
lower bound, the e-bus must go charge. However, if the expected battery 
SoC after finishing the next trip is above the SoC lower bound but the 
current SoC falls below the flexible charging threshold, the e-bus will go 
charge if there is a charger available, or, if no charger is available, it will 
continue serving the next trip. Note that the flexible charging threshold 
should be larger than the SoC lower bound. To test this flexible charging 
strategy, we solved the system optimization problems, including opti
mizing over the flexible charging strategy, for the three scenarios with 
10, 20, and 30 e-buses. We consider 7 possible values for the flexible 
charging threshold ranging from 0.2 to 0.8, with a step size of 0.1. 
Figs. 17–19 compare the Pareto frontiers with and without flexible 
charging under the three scenarios with 10, 20, and 30 e-buses, 
respectively. For each scenario, the Pareto frontier for the flexible 
charging strategy case is closer to the lower-left corner compared to the 
case without flexible charging. Because smaller capital cost and average 

Table 2 
Detailed Information on the Four Representative Solutions.  

Solution Battery 
Size 
(kWh) 

Charging 
Power 
(kW) 

Number 
of 
Chargers 

Total 
Capital 
Cost ($) 

Average 
Daily Miles 
by CNG 
Buses (miles) 

1 50 10 1 5,753,500 7563 
2 50 230 1 5,830,500 6204 
3 150 340 2 6,488,000 5353 
4 500 330 4 8,462,000 5015  
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daily miles traveled by CNG buses can be achieved as the Pareto frontier 
gets closer to the lower-left corner, these results imply that the bus 
system design with the flexible charging strategy has better performance 
than the design without the flexible charging strategy. The benefits of 
incorporating a flexible charging strategy can be significant under 
certain scenarios. As shown in the Fig. 19, if decision-makers want to 
have NonEV miles (miles traveled by CNG buses) at the level marked by 
the dotted line, the scenario without flexible charging will cost about 
$22.2 million, whereas the scenario with flexible charging can reduce 
the cost to $20.1 million, a 9.5 % reduction. In practice, however, DFW 
should further consider the tradeoff between the benefit of the flexible 
charging strategy and the difficulty and/or cost of implementing it, 
which is beyond the scope of this study. 

4.3.5. Full fleet electrification 
Now, we consider the case where DFW replaces all CNG buses with e- 

buses, with a goal of minimizing the total capital cost while ensuring 
that passengers’ mean waiting time is no greater than the 355-second 
waiting time under the status quo scenario. Because the fleet size of 
the shuttle system is 46, the number of chargers can range from 1 to 46, 
i.e., x ∈ {1,2,⋯,46}. The possible values for charging power and bat
tery capacity are the same as those in Section 4.3.1, i.e., σ ∈ {10,20,⋯ 
, 350} and emax ∈ {50,100,⋯,600}. We assume that chargers are 
installed at the rental car center. The flexible charging strategy from 
Section 4.3.4 is also considered, with the flexible charging threshold 
ranging from 0.2 to 0.8 with a step size of 0.1. In total, there are 135,240 
combinations of the number of chargers, charging powers, battery ca
pacities, and the flexible charging threshold. We solved the system 
optimization problem using the proposed genetic-algorithm-based so
lution procedure with pop size = 100, Prob co = 0.6, Prob mt = 0.15, 
and max generation = 150. At each iteration, 100 processors were used 
to run the simulation for each chromosome in parallel. It took 

Fig. 14. Pareto frontiers with different distances between the rental car center and the charging station.  

Fig. 15. The capital cost and average daily miles traveled by CNG buses for nondominated and dominated solutions under the scenario with 20 e-buses.  
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approximately 10 h to finish the solution procedure. Fig. 20 shows the 
convergence performance of the parallel genetic-algorithm-based solu
tion procedure. Note that the constant vehicle cost is excluded from the 
total cost. The obtained solution is reported as follows: battery capacity 
emax = 50 kWh, charging power σ = 210 kW, number of chargers x = 4, 
and flexible charging threshold = 0.2. The total capital cost is 
$26,744,000, which consists of total battery and charger costs of 
$1,444,000 and constant vehicle costs of $25,300,000. The mean 
waiting time for passengers is 353 s, which is below the 355-second 
waiting time under the status quo scenario. To further verify the effec
tiveness of the genetic-algorithm-based solution procedure, we simu
lated and evaluated all 135,240 combinations of the number of chargers, 
charging powers, battery capacities, and the flexible charging threshold. 
Fig. 21 shows the mean waiting times and total battery and charger costs 
for all feasible solutions. One can observe that the solution obtained 
from the genetic-algorithm-based procedure (highlighted using a red 
“x”) is the global optimal solution, demonstrating the effectiveness of 
the solution procedure. 

4.3.6. Comparison with existing methods 
To the best of our knowledge, there are no existing studies that 

address the planning problem of airport e-bus systems with station- 
based charging. However, as discussed in the Introduction, a few 
studies have developed mathematical programs to investigate the 
planning problem of city e-bus systems with station-based charging (e. 
g., [11,18,17]. Compared to existing studies that optimize e-bus system 
design using pure mathematical programs, the proposed simulation- 
based optimization framework can depict the real-world operation of 
an e-bus system with much higher fidelity. To ensure tractability, 
mathematical programs usually simplify the operation of an e-bus sys
tem. For instance, none of the aforementioned studies consider bus ca
pacity, passenger queuing behavior at bus stops, and e-bus queuing 
behavior at charging stations. In our simulation-based optimization 
framework, each system design is evaluated using a high-fidelity simu
lation driven by real-world operation data, which is close to a real-world 
field test. Therefore, optimal solutions from our framework should al
ways have performance that is equal to or better than solutions from 
pure mathematical programs. The downside of the simulation-based 
optimization framework is that the simulation model requires abun
dant bus operation data and lots of computing resources. For complex 
city bus systems with a lot of bus routes, many shared terminals and 
transfer bus stops, and massive passenger origin–destination pairs, the 
simulation-based method might be computationally too expensive, 
compelling us to rely on simplified mathematical programs to address 
the planning problem. Compared to city bus systems, airport shuttle 
systems usually have a much simpler structure and passenger demands. 
Our numerical studies demonstrate that the computational burden of the 
proposed simulation-based optimization framework is acceptable for a 
real-world airport shuttle system. 

4.3.7. Battery degradation and Grid-Side effect of charging 
The capacity of e-bus batteries degrades over time and during the 

charging and discharging cycles. Battery aging is impacted by many 
correlated factors, such as depth of discharge, environmental conditions, 
temperature, the quality of the chemical elements used to manufacture 
the battery, fast/slow charging, etc. It is therefore difficult to accurately 
estimate battery aging. In practice, when the capacity of a battery drops 
by more than 20 % or the internal resistance doubles, the battery will be 
replaced with a new one [46]. In the literature, studies on e-bus system 
planning usually consider a midlife battery replacement cost. The bat
tery cost used in our numerical studies is set to $500/kWh, including 

Fig. 16. The capital cost and average daily miles traveled by CNG buses for nondominated and dominated solutions under the scenario with 30 e-buses.  

Table 3 
Detailed Information About the Two Representative Solutions for the Scenario 
With 20 E-Buses.  

Solution Battery 
Size 
(kWh) 

Charging 
Power 
(kW) 

Number 
of 
Chargers 

Total 
Capital 
Cost ($) 

Average 
Daily Miles 
by CNG 
Buses 
(miles) 

1 50 10 1 11,503,500 7511 
2 550 350 7 17,357,500 2582  

Table 4 
Detailed Information About the Two Representative Solutions for the Scenario 
With 30 E-Buses.  

Solution Battery 
Size 
(kWh) 

Charging 
Power 
(kW) 

Number 
of 
Chargers 

Total 
Capital 
Cost ($) 

Average 
Daily Miles 
by CNG 
Buses 
(miles) 

1 50 330 1 17,365,500 4715 
2 450 350 7 24,107,500 505  
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midlife replacement [45]. To consider the worst-case scenario when the 
battery capacity drops 20 % before replacement, we can add an 80 % 
coefficient to battery capacity in the simulation to ensure normal shuttle 
system operation. Simulation results show that, with full fleet electrifi
cation, the solution with a 50-kWh battery capacity and four 210-kW 
chargers is still the optimal solution, meaning that the 50-kWh nomi
nal battery capacity is large enough to ensure normal operation even 
when it drops by 20 %. 

Probable grid impacts of electric vehicle charging include peak 
power demand increases, regulatory voltage limit violations, power loss 
increases, distribution system asset overloading, harmonic problems, 
and system voltage stability issues [47]. Installing energy storage units 
at the fast charging station [48] and incorporating smart charging 
scheduling and management [49] are two potential ways to alleviate the 
impact of e-bus fast charging on the power grid. 

5. Conclusions 

In this study, we address the strategic planning problem for electric 
airport shuttle systems. We develop a data-driven simulation-based 
optimization modeling framework to help airport shuttle system oper
ators who plan to deploy e-buses determine the battery capacity, 
charging power, and number of chargers to be installed. Compared to 
existing studies, the primary contribution of the proposed method is that 
it can model the real-world stochastic nature of e-bus system operations 
with much higher fidelity. 

The effectiveness of the proposed model is demonstrated through 
extensive numerical studies based on a real-world airport shuttle system 
that connects the five terminals and the rental car center at DFW. When 
the airport shuttle system is partially electrified, the simulation-based 
optimization model considers two objectives—minimizing the total 

Fig. 17. Comparison between Pareto frontiers with and without flexible charging under the scenario with 10 e-buses.  

Fig. 18. Comparison between Pareto frontiers with and without flexible charging under the scenario with 20 e-buses.  
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capital cost and minimizing the average daily miles traveled by CNG 
buses—and provides a set of Pareto optimal solutions. For instance, 
when 10 buses are electrified, the solution with a 50-kW battery ca
pacity and one 10-kW charger leads to the minimum capital cost and the 
maximal miles traveled by CNG buses; the solution with a 500-kWh 
battery capacity and four 330-kW chargers has the minimal miles 
traveled by CNG buses and the maximal capital cost; and other Pareto 
optimal solutions provide different tradeoffs between the two objec
tives. When considering full fleet electrification, the model finds a so
lution that minimizes the total capital cost while ensuring that the 
passengers’ mean waiting time does not exceed the one under the status 
quo scenario. The solution requires a 50-kWh battery capacity and four 
210-kW chargers, resulting in a total capital cost of $26,744,000. Brute 
force enumeration can find global optimal solution(s) but requires 
massive computing resources to evaluate all possible solutions. The 
proposed genetic-algorithm-based solution procedure can effectively 

find near-optimal solutions with limited computing resources. 
Concerns about air quality impacts and regulations will drive more 

and more airports to convert their shuttle fleets to zero-emission e-buses. 
The proposed modeling framework can provide practitioners with an 
effective tool for the strategic planning of an electric airport shuttle 
system. 

Numerical studies provided in this paper are based on the data 
collected in wintertime, which might not capture the potentially higher 
energy consumption from air-conditioning during the summer months. 
Two potential methods might be used in future studies to address this 
limitation. First, if possible, shuttle bus operation data during the 
summer months should be collected to capture the bus energy con
sumption characteristics during summertime. Second, a thermal cabin 
model can be developed to estimate the air-conditioning energy con
sumption under different ambient temperatures. This study only con
siders a fixed number of buses being replaced by e-buses and does not 

Fig. 19. Comparison between Pareto frontiers with and without flexible charging under the scenario with 30 e-buses.  

Fig. 20. Convergence of the genetic-algorithm-based solution procedure.  
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consider gradual implementation of e-buses. Our future research will 
consider time-dependent gradual electrification of an airport bus sys
tem, in which the number of e-buses to be deployed at each planning 
period is also a decision variable. We will also investigate other charging 
technologies (e.g., battery swapping and dynamic wireless charging) in 
airport shuttle systems in future studies. 
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