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A B S T R A C T   

Airports are on the front line of significant innovations, allowing the movement of more people and goods faster, 
cheaper, and with greater convenience. As air travel continues to grow, airports will face challenges in 
responding to increasing passenger vehicle traffic, which leads to lower operational efficiency, poor air quality, 
and security concerns. This paper evaluates methods for traffic demand forecasting combined with traffic 
microsimulation, which will allow airport operations staff to accurately predict traffic and congestion. Using two 
years of detailed data describing individual vehicle arrivals and departures, aircraft movements, and weather at 
Dallas-Fort Worth (DFW) International Airport, we evaluate multiple prediction methods including the Auto 
Regressive Integrated Moving Average (ARIMA) family of models, traditional machine learning models, and 
DeepAR, a modern recurrent neural network (RNN). We find that these algorithms are able to capture the diurnal 
trends in the surface traffic, and all do very well when predicting the next 30 minutes of demand. Longer forecast 
horizons are moderately effective, demonstrating the challenge of this problem and highlighting promising 
techniques as well as potential areas for improvement. 

Traffic demand is not the only factor that contributes to terminal congestion, because temporary changes to 
the road network, such as a lane closure, can make benign traffic demand highly congested. Combining a demand 
forecast with a traffic microsimulation framework provides a complete picture of traffic and its consequences. 
The result is an operational intelligence platform for exploring policy changes, as well as infrastructure expansion 
and disruption scenarios. To demonstrate the value of this approach, we present results from a case study at DFW 
Airport assessing the impact of a policy change for vehicle routing in high demand scenarios. This framework can 
assist airports like DFW as they tackle daily operational challenges, as well as explore the integration of emerging 
technology and expansion of their services into long term plans.   

1. Introduction 

Mobility technologies are transforming the way we live and do 
business. Nowhere is this more evident than in the multi-modal trans-
portation hubs–primarily airports–that connect people and move goods 
around the world. The increased use of smart mobility technologies at 
transportation hubs holds the promise of providing consumers and 
businesses with many benefits including increased convenience, effi-
ciency, and resilience. However, the challenges of adapting complex 
transportation networks to rapidly evolving technology trends are sig-
nificant; Non-optimal planning and/or execution may result in increased 
energy consumption, costs, and system inefficiencies. 

To support this research, we have developed a partnership with 
Dallas-Fort Worth International Airport (DFW), the nation’s first carbon- 
neutral airport, which is simultaneously positioned in the urban region 
of greatest population growth (U.S. Census Bureau, 2018). DFW is the 
fourth busiest airport in the world by aircraft movements (takeoffs and 
landings) and has service to 249 destinations, including 62 international 
and 187 domestic destinations. The airport served a record 69,194,406 
passengers in 2018. There are approximately 60,000 people that work 
at DFW, including airport employees, concessionaires, and others. 
Meanwhile, air traffic is forecast to double in the next 20 years, and DFW 
is committed to responding to this increase in demand by growing its 
capacity. 
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In this work, we developed an operational model for airport pas-
senger traffic by combining traffic demand forecasting with traffic 
microsimulation as depicted in Fig. 1. To accomplish this, (1) we predict 
traffic volume into the airport, and (2) we use traffic microsimulation to 
distribute the predicted traffic volume obtained from the first task to the 
airport road network. The microsimulation model represents traffic by 
simulating the behavior and interaction of individual vehicles. It is 
designed both for real-time forecasting of traffic conditions and long- 
term infrastructure planning. A predictive demand forecast model can 
assist in responding to peaks and valleys in traffic that may impact op-
erations and security, as well as provide a platform for experimentation 
with the airport infrastructure and exploration of impacts in terms of 
fuel use, emissions, revenue, and delays. We have designed and evalu-
ated this model with the specific task of capturing traffic and congestion 
at the terminal curbside in order to better understand why and where 
traffic events occur and how they may best be mitigated. The developed 
model is generalized so that it may be applied to any airport central 
terminal area (CTA) having basic observability of historic traffic ingress 
and egress, flight schedules, and weather. 

Traffic flow prediction specific to airport region has rarely been 
studied in the literature. Davidson et al. (1969) predicted the traffic flow 
in and out of the airport by using unit effect graphs to generate the 
distribution of the number of passengers arriving at and leaving the 
airport according to flight schedules. Later researchers used similar 
approaches to generate traffic demand at the airport, then applied 
discrete event simulations to further analyze curbside traffic congestion 
(Burgsteden et al., 2000; Tunasar et al., 1998). Traffic prediction in 
general urban settings has been widely explored in literature, and 
abundant prediction algorithms have been discussed, from 
heuristics-based naïve approaches, such as historical averaging 
(Nikovski et al., 2005; Park and Rilett, 1617) and clustering (Weijermars 
and Berkum, 2005; Wild, 1997), to various parametric and 
non-parametric approaches (Van Hinsbergen et al., 2007). Due to the 
limited work on airport-specific traffic modeling, we have also investi-
gated a broad class of methods suitable for modeling and predicting 
traffic and timeseries dynamics in general. 

The autoregressive integrated moving average (ARIMA) model has 
been broadly applied in analyzing time-series data. After its first appli-
cation in traffic prediction by Hamed and Al-Masaeid (Hamed 
Mohammad et al., 1995), various versions of ARIMA have been 
explored: seasonal ARIMA (SARIMA) that incorporates the seasonality 
of the time series data has been proved to generate more accurate pre-
dictions but demands much higher computational cost (Williams and 
Hoel, 2003); ARIMA with regressors (ARIMAX) can incorporate cova-
riates to improve prediction accuracy (Williams, 2001); as a less-costly 

alternative of SARIMA, the combination of Kohonen maps and ARIMA 
(KARIMA) uses clustering to measure seasonality then applies ARIMA 
for each cluster (Van Der Voort et al., 1996); and (Tran et al., 2015) 
combined SARIMA with generalized autoregressive conditional hetero-
skedasticity (GARCH) algorithm to capture the volatility of traffic flow. 
Some other traffic flow modeling algorithms are also essentially derived 
from or applications of ARIMA, such as seasonal Holt Winter’s model 
(Raikwar et al., 2017), exponential smoothing (O’Mahony et al., 2005), 
and ATHENA (Danech-Pajouh, 1991; Kirby et al., 1997). 

Non-parametric models have also been used for traffic flow predic-
tion, such as K-nearest neighbor (KNN), decision tree, support vector 
regression (SVR), and artificial neural networks (ANN) (Vlahogianni 
et al., 2004; Smith, 1995) found that a simple implementation of KNN 
sometimes generates reasonably good traffic volume prediction, but it 
usually requires a lot of data. It has been shown that the prediction 
accuracy of SVR usually is not as good as SARIMA for traffic prediction 
as it does not address seasonality properly (Vlahogianni et al., 2014), but 
seasonal SVR, which introduces a seasonal kernel for SVR, is a 
competitive alternative when performing forecasts during the most 
congested periods with significantly less computational cost than SAR-
IMA (Lippi et al., 2013). The combination of SVR and denoising algo-
rithms is proved to help improve prediction accuracy of SVR for some 
practices (Hong, 2012; Tang et al., 2019). Different versions of ANN 
have been explored for traffic flow prediction (Do et al., 2019), among 
which recurrent neural networks (RNN), especially long short term 
memory recurrent neural network (LSTM), has proven to be able to 
capture both the long-term trend and also the seasonality of traffic flow 
and in many cases to offer more desirable prediction accuracy than 
ARIMA and SVR models (Ali and Mahmood, 2018; Kang et al., 2017; 
Tian and Pan, 2015; Yang et al., 2019), but it usually requires a lot of 
data for model training (Do et al., 2019). The DeepAR (Salinas et al., 
2020) implementation we evaluate in this paper represents this 
state-of-the-art LSTM-based autoregressive RNN. 

The above methods focus on a one dimensional, or univariate, 
forecast. As of late, additional efficiencies have been discovered and 
utilized in the traffic prediction domain when working with multiple 
streams of data (Wu et al., 2019; Li et al., 2017). These graph-based 
methods make use of the topology of the network associated with the 
road sensors and are able to produce even more effective models than 
when utilizing multiple independent univariate forecasts. The traffic 
data provided by DFW for this research is observed in two locations, but 
we combine this into a single stream of inflow demand, because we are 
actually interested in the traffic volume within the CTA. Future work 
may consider these multivariate methods if more detailed data is pro-
vided at a larger number of locations. 

Fig. 1. The operational model developed in 
this work operates with two major tasks: (1) 
traffic volume prediction and (2) traffic 
microsimulation. We evaluate several major 
volume predictive models which utilize 
different combinations of input features. 
Microsimulation utilizes predicted flow, 
traffic management, and road network in-
formation. The resulting data and visualiza-
tions show traffic on road segments as well 
as diagnostic metrics such as speed, volume, 
emissions, and energy usage.   
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Traffic flow prediction based on historical data using the afore-
mentioned approaches is usually suitable for short-term prediction, as in 
forecasting of the next time period, usually no more than 30 min. 
However, for long-term prediction, as in forecasting of the following 
day, week, or even longer, some models can suffer from error propa-
gation (Su et al., 2016). Transportation agencies demand traffic pre-
diction models that are robust for both short-term and long-term 
predictions and sensitive to weather conditions and special holidays 
(Vlahogianni et al., 2014; Su et al., 2016) described a method called 
Functional Non-parametric Regression (FNR) and showed that FNR 
provides superior prediction accuracy than SARIMA, neural networks 
(NN), and SVR for long-term predictions. The forecasting framework 
Prophet, which appeared recently in the literature, generates decom-
position of time series data and is shown to be able to reflect trend better 
than SARIMA and BPNN (Taylor and Letham, 2017). In this work, we 
evaluate the most promising of these approaches in their efficacy at 
forecasting CTA traffic in comparison to a baseline. 

As mentioned previously, traffic volume is only one of many factors 
that impact traffic congestion. In order to understand how traffic de-
mand may practically impact airport operations, we utilize traffic 
microsimulation. Prior microsimulations for airport traffic mostly use 
proprietary microscopic simulation software (Harris et al., 2017) 
including Leigh Fisher Associates Curbside Traffic Simulation (LFACTS) 
model (Duncan and Johnson, 2000), Advanced Land Transportation 
Performance Simulation (ALPS) (Kimley-Horn and A. Inc, 2019), Ter-
minal, Roadway, and Curbside Simulation (TRACS) (Hargrove and 
Miller, 2002), and VISSIM (Fellendorf and Vortisch, 2010). In this work, 
we chose to use the Simulation of Urban Mobility (SUMO) micro-
simulator (Behrisch et al., 2011), an open source simulator, to enable 
our modeling to be replicated for other airports without requiring access 
to proprietary and generally expensive simulators. SUMO was previ-
ously used to model airports’ ground public transportation, including 
buses and trains, for a multi-airport region (Noyer et al., 2018). In 
contrast, our SUMO model focuses on simulating traffic created by 
personal vehicles in and out of the DFW airport. 

2. Data 

In order to develop a model for airport traffic flow and its impact on 
curb congestion, we model the traffic demand at the curb from a given 
flight schedule and other exogenous data, and then use this estimate of 
traffic to simulate different scenarios at the airport. Data collected from 
key mobility touch points throughout an airport are critical to under-
standing the challenges and opportunities associated with shifts in 
mobility technologies and provide a solid foundation for executing so-
lutions with a high level of confidence. This section discusses the data 
available for modeling, what it reveals about the system under study, 
and how we utilize that data to design and drive our models. 

2.1. Surface traffic 

The Dallas-Fort Worth International Airport (DFW) is accessed by 
vehicles via a control plaza on either the north or south side of the 
airport. This control plaza captures the traffic egress and ingress both for 
passenger traffic as well as some fraction of through-traffic that uses the 
airport tollway to bypass nearby highway traffic. Since we are interested 
only in the subset of vehicles that are dropping-off and picking-up pas-
sengers at the curb, we exclude all vehicles where the total time between 
entering and exiting the control plaza is less than eight minutes (bypass 
traffic) or greater than two hours (parking). Shuttle bus and public 
transit data are also available and provide a complete picture of the 
passenger arrival process, however we do not use those data sources in 
this work, because at DFW, shuttle bus and passenger vehicles use 
different levels for drop-off and pick-up. We are primarily investigating 
the impact of passenger vehicle congestion. 

A timeseries plot for the daily number of vehicles is shown at the 

bottom of Fig. 2. Comparing this representation to the number of flights 
(top line of the graph), we can see that the surface traffic graph has the 
same general trend as the flights, but is overall smoother. Results show 
that the number of flights during the day at DFW has very predictable 
cycles. 

2.2. Airline traffic 

We obtain arriving and departing flight data from the Harris Sym-
phony system (Harris, 2019). The data contains scheduled fight times, 
actual flight times, type of flight (e.g., cargo or passenger), and the 
unique aircraft identifying N-number. Similar to prior studies utilizing 
the flight schedule as a proxy for estimating surface traffic (Davidson 
et al., 1969), we assume that this data is proportional to the actual load 
at the airport and is an important feature in our predictive models. For 
modeling the vehicle traffic, we only consider passenger flights, and we 
use the scheduled flight times. We associate the number of seats on each 
unique airplane, joining on the N-number, to the flight schedule in order 
to estimate the maximum number of passengers expected at the DFW 
airport (Federal Aviation Administration Aircraft Inquiry, 2019). Again, 
the top graph in Fig. 2 shows the daily distribution of flights at DFW and 
the very consistent cyclic pattern it has. 

The flight data allows us to know the number of flights arriving and 
departing as well as the number of seats. We do not know how many 
people were on the plane, the load, or how what percent of those people 
will actually use the curb as opposed to taking a connecting flight, the 
origin-destination number. While we could estimate these values using 
the average passenger load at DFW of 82% from the Bureau of Trans-
portation Statistics (Bureau of Transportation Statistics, 2019) and an 
origin-destination of around 38%, we acknowledge that our goal is not 
to estimate the number of curb passengers, but rather estimate the 
number of vehicles that will be using the passenger drop-off and pick-up 
curb, and for this, the total number of flights and total number of seats 
are sufficient exogenous features. We also observe that some of the 
passengers will take a shuttle bus to the rental car center, one of the 
parking lots, or to another terminal. The data indicates that this repre-
sents about 19% of the passengers at the curb, adding additional support 
to the difficulty of trying to actually estimate curb vehicle passengers. 

2.3. Exogenous features 

Weather, flight delays, traffic accidents, and other exogenous events 
can impact the traffic arrival pattern. In order to account for this, we 
include detailed, high-resolution weather information including tem-
perature, wind speed, precipitation, and pressure in our modeling. The 
historic weather data for the DFW airport was also downloaded from the 
Harris Symphony system (Harris, 2019). Weather events significant 
enough to cause flight delays or difficulty driving to the airport could 
cause changes in congestion as well as changes in the number of vehicles 
and passengers expected to arrive at the airport. The weather data 
incorporated into the modeling is historic data, which could present a 
challenge due to the difference between forecast weather and actual 
weather data. This could be a limitation of using the historic data in our 
modeling process and could provide us with more information for pre-
diction than would ultimately be available in real time forecasting of 
congestion. 

Combining surface traffic, airline information, and exogenous 
weather data, we are able to assemble two contiguous years’ data set 
from October 2017 to September 2019. On average, over the last year of 
data, we estimate that around 38K vehicles enter the control plaza per 
day to pick-up or drop-off passengers, but can be as high as 52K vehicles 
on high demand days. Over the same period, there are approximately 
1, 650 average flights per day providing roughly 278K available seats. 
On the highest production day, there were 1,978 flights and a total of 
334K seats. 

To support the modeling task, we aggregate these data into fixed- 
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length bins. The size of the aggregation period changes the magnitude of 
the observed cycles throughout the day, and we believe that the reso-
lution of the underlying model is important for accurately predicting 
and modeling the congestion at the curb. Specifically when we re- 
sample the data to a 60 min frequency, harmful smoothing occurs 
which removes features that are present when we aggregate the data at 
the 30 min level. Considering this trade-off, we choose to aggregate the 
data into 30 min bins, which for two years gives us 35,040 observations 
(365∗24∗2∗2). 

2.4. Periodic patterns 

A key consideration in modeling airport traffic is the intrinsic peri-
odicities in the data. To better understand these dynamics, including 
what frequencies are present and how they change over time, we per-
formed a wavelet analysis on the traffic data. Wavelet transforms are 
similar to Fourier transforms because both determine frequencies in a 
signal, however, the wavelet analysis can also determine how these 
frequencies change over time (Graps, 1995; Cazelles et al., 2008). The 

graphs that we examined display which frequencies are present on the 
y-axis and what time they appear on the x-axis, while the coloring at a 
specific point shows how intensely the traffic data showed a match with 
that frequency at that time (Taspinar, 2018). 

Fig. 3 shows the month of August, with the upper graph displaying 
the count of vehicles every 30 min—the signal—and the lower graph 
displaying the wavelet transform of this signal using the real component 
of a Morlet wavelet as the analyzing wavelet. The wavelet transform also 
has a white parabolic line marking the cone of influence; below this 
curve, the analyzing wavelet is nearing the edges of the signal and may 
only be showing edge effects, not true periodicity. 

Due to the nature of wavelet analysis, the y-axis is given as an inverse 
log scale in base 2, meaning that the smaller periods are shown at the top 
of the wavelet transform image, and the larger periods are shown at the 
bottom and all values are given in hours. The darkest reds and darkest 
blues are of the most interest, because those points display the greatest 
overlap with the Morlet wavelet of that frequency compared to other 
points. Furthermore, the dark red indicates a peak of given frequency 
was found in the signal, while the dark blue indicates that a trough was 

Fig. 2. Timeseries plots for daily number of 
flights (top) and daily count of vehicles 
(bottom) every 30 min for the period be-
tween 2018 and 10-01 to 2019-09-30. We 
generate this plot by overlaying each day as 
a function of time. The colored region 
around the mean line in each graph repre-
sents the inner 90% of the data, which shows 
that the cycles are very consistent over time 
and less dramatic in the traffic data. (For 
interpretation of the references to colour in 
this figure legend, the reader is referred to 
the web version of this article.)   

Fig. 3. Wavelet Analysis on the traffic data for August 2018. The markings on the right bottom graph represent periods of interest and include strong frequencies at 
the day (24 h), half-day(12 h), and half-week (84 h). Weaker features includes the 4 h and 1 week areas. 
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found. 
Referring to Fig. 3, the strongest periodicity signals in the data 

appear to occur at lower time frequencies that could be identified by the 
day of week or hour of day. The most pronounced signals occur daily 
between hours 16 and 32, or on average every 24 h. We also observe a 
strong pattern near the half-day, or 12 h mark, and some less pro-
nounced features around the 4 h level. 

The circular-looking features, that are centered around a half-week 
(84 h), move through time at this frequency, each peak and each 
trough is usually about 1.75 days which together form the 84 h period. 
The blue troughs center around mid-week and mid-weekend while the 
red peaks center around Fridays and Mondays. Light colors occur above 
the dark blue circular features on Wednesdays, indicating that there is 
little periodicity between 32 and 64 h (1.3 and 2.7 days) near midweek. 
But, Friday through Monday shows a stronger 1–3 day periodicity as 
seen by the dark red and dark blue features that extend upward in this 
section between 32 and 64 h. 

Based on these results, and in agreement with prior work (e.g. 
(Vlahogianni et al., 2014), and (Lippi et al., 2013)), we choose to 
emphasize periodic features in our models both by using seasonal var-
iants of moving average models (e.g., SARIMA) and by including peri-
odic labels directly in training of non-parametric models. This wavelet 
analysis increases our understanding of the periodicity of the traffic data 
and provides a good understanding of which time features will be 
important. This leads us to add weekday and day-of-month variables to 
our machine learning features. A potential future direction could be to 
use the wavelet coefficients directly in the machine learning feature 
space to see if they better predict future traffic. 

The strong autocorrelation on the daily level shows up in other sta-
tistical tests too. When testing for stationarity, using the standard 
Augmented Dickey-Fuller (ADF), the lags used for autocorrelation 
returned by the test are 48, which is a day at the 30 minute frequency we 
are using. The ADF test also returns a small enough p-value, much less 
than 0.05, that we are able to reject the null hypothesis that the data is 
not stationary, at least over the time frame we are considering. A sea-
sonal decomposition using the daily frequency also suggests a strong 
trend here. 

3. Methods 

In this section we discuss the features of our data set, the predictive 
demand models evaluated, and the integration between demand pre-
dictions and the SUMO microsimulation. 

3.1. Data features 

Our target variable described above and displayed in Fig. 1 (bottom) 
and Fig. 3 (top), the surface traffic, is the count of all drop-off and pick- 
up vehicles entering the CTA at DFW every 30 min. We denote this as 
surface_traffic. We have also described the total number of flights Fig. 1 
(top) and the total number of seats. We denote these variables as air-
line_traffic and airline_seats. The detailed weather data we have provides 
us four additional variables: temperature, humidity, pressure, and wind 
speed. 

In this section we describe some additional features that include 
convolution of the arrival and departure flight times to estimate termi-
nal traversal delay, date and time features to allow for modeling of 
monthly, weekly, and diurnal periodicities, and lagged parameter values 
for algorithms that are not autoregressive. 

3.1.1. Terminal traversal delay 
One of the first observations we noticed was that the airline_traffic 

data is much more periodic than the surface_traffic, which is to say that 
they are not highly correlated. A similar pattern emerges for the air-
line_seats when we add in the number of seats on each flight in the air-
line_traffic. We reasoned that it would take a certain amount of time for 

passengers to get to the curb once they arrived, and in the same way, 
departing passengers will arrive to the airport early for a departing 
flight. To address this, we performed a grid search over possible distri-
butions for both arrivals and departures and then analyzed the corre-
lation of the resulting flight and traffic data. We refer to this optimal 
change as the adjusted_airline_seats, because we use the number of seats 
on each flight as a basis for our calculated delay. We found the optimal 
delay for arrivals and departures to be 40 min and 110 min respectively. 
We reason that this makes sense because it takes around 40 min to get to 
the curb for arrival flights and passengers tend to arrive about 110 min 
before their departing flights. Fig. 4 shows the impact of this trans-
formation where the bottom graph is much smoother when accounting 
for this terminal traversal delay. While this is reasonable in terms of 
what might physically happen at the airport, it is also acceptable to 
apply this transformation simply because it improves the correlation 
with the surface_traffic data. The highly cyclic airline_traffic may actually 
reduce curb congestion given these estimates of terminal traversal. 

3.1.2. Periodic markers 
The time of day provides several periodic features that may be useful 

in predicting surface_traffic. There are at least two ways to encode this 
information. The first method, one-hot encoding, creates a categorical 
feature for each value. These methods can increase the dimensionality of 
the feature space and also may not capture the cyclic nature of the data. 
The second method, sine-cosine encoding, maps each value to a sine and 
cosine value so that the beginning and end of the period line up. For this 
work, we considered the following features: year, month, day, week, day 
of week, hour, and half-hour and encode with the one-hot method. These 
features are most relevant for algorithms that do not learn a periodic 
encoding. 

3.1.3. Lagged features 
The group of classic machine learning algorithms—linear regression, 

SVR, and XGBoost—are not autoregressive and will benefit from lagged 
features. For the purpose of this evaluation, we lag the surface_traffic, 
airline_seats, and adjusted_airline_seats. When forecasting the next inter-
val, we assume these lagged parameters will be available, but because 
these algorithms also model each observation independently, we do not 
include the surface_traffic when forecasting longer time horizons. In 
other words, unlike the data coming from flight schedules, the air-
line_traffic, airline_seats, and adjusted_airline_seats, which are features that 
are known in advance, we can only use the lagged surface_traffic for the 
next forecast (e.g. 30 min). 

In summary, the data features available for predicting surface_traffic 
are: airline_traffic, airline_seats, adjusted_airline_seats, year, month, day, 
week, day_of_week, hour, half_hour, temperature, pressure, humidity, and 
wind_speed, as well as our lagged values for surface_traffic, airline_seats, 
and adjusted_airline_seats. 

3.2. Feature importance 

There are several ways to identify which features will likely be the 
most effective in predicting the surface_traffic and we focus on three of 
them: correlation, mutual information statistics (Ross, 2014), and 
feature importance from boosted decision trees. The first method looks 
at the correlation between the target and a feature with the assumption 
that a higher positive correlation will be a good predictor of the target 
value. This is the same reasoning we used to justify the creation of our 
adjusted_airline_seats parameter. Mutual information statistics calculate 
the information gain, or reduction of uncertainty, that each variable has 
on the target. Finally, using a boosted decision tree, like XGBoost, will 
report on which features were most important in learning the target 
parameter values. 

We computed these statistics across our validation sets (described 
below) and normalized the values so that they would be more compa-
rable. The non-lagged parameters with the highest values across all 
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three tests were: adjusted_airline_seats, hour, half_hour, airline_traffic, air-
line_seats, humidity, and temperature. The lagged parameters with the 
highest values were surface_traffic and adjusted_airline_seats. 

3.3. Model fitting and validation 

With a potential set of features identified we are now able to deter-
mine which combination of model and features provides the best 
modeling for predicting surface_traffic. This, of course, also depends on 
the algorithms we deploy, the hyper-parameters used, and the periods 
for which we forecast. In this section, we describe the methodology used 
for identifying an optimal subset of features, the metrics we use for 
measuring performance, and the algorithms used. 

3.3.1. Baseline 
The baseline model we use is a simple univariate linear model that 

predicts surface_traffic from the airline_traffic and airline_seats data. This 
method is in the spirit of the model described by Davidson in 1969 
(Davidson et al., 1969) and is not expected to be effective, but rather 
provide perspective for the methods described below. This baseline 
linear model does not use any lagged values or weather data. 

3.3.2. SARIMAX 
The SARIMAX model is based on the ARIMA model with the added 

capability to include seasonality and exogenous parameters. The ARIMA 
model is a combination of an auto regressive model that produces a 
forecast based on the history of the target values and a moving average 
of the historical values. The parameters of the ARMIMA model specify 

the lags used in the auto regressive component (p), the degree of dif-
ferencing required (d), and the number of moving average terms (q). The 
seasonal version repeats these parameters and also has a term that 
specifies the length of the seasonal component (s). Decent starting values 
for p and q can be obtained by the partial autocorrelation function 
(PACF) that determines the influence of the lag on the target value. The 
graphs in Fig. 5 suggests a (2,0,8) model as a starting point for ARIMA 
and the autocorrelation function (ACF) confirms the seasonality 
parameter of 48 that we have presented evidence for previously. 

3.3.3. Machine learning 
The problem of predicting traffic from a well-structured feature set is 

a supervised regression problem. We evaluated three classic regression 
algorithms on our data: multiple linear regression, Support Vector 
Regression (SVR), and XGBoost (Chen et al., 2015). Lasso is a linear 
model that constrains the coefficients by adding a penalty to the cost 
function. This helps prevent over-fitting and can help in feature selection 
(James et al., 2013). The SVR algorithm is an extension to the Support 
Vector Machine (SVM) that allows for a qualitative prediction by 
modifying the definition of the margin used in the cost function (James 
et al., 2013). Like the SVM, it uses a kernel to account for non-linear 
feature interaction. XGBoost is a parallel gradient boosting decision 
tree implementation that aggregates the performance of several decision 
trees by limiting the number of predictors each tree can utilize (Chen 
et al., 2015). 

Each of these methods have hyper parameters that can impact their 
efficiency. In each instance, we tune the parameters by varying them 
over a set of reasonable possibilities and evaluating how well each set 

Fig. 4. A grid search over different possible distribution shifts applied to the arriving and departing maximum passenger data shows that we can increase this 
correlation by shifting the arrival flights forward by 40 min and shifting the departing flights back by 110 min. Comparing the bottom figure with the traffic counts in 
Fig. 2 it is more clear that this shift smooths out some of the cyclic patterns that exists in the flight data. This transformation can be applied to future flight schedules 
as well. 

Fig. 5. The ACF and PACF plots for the surface traffic. The ACF plot shows a peak significant seasonality of 48 lags, which is a single day with our re-sampling rate. 
The PACF plot suggests values p = 2 and q = 8 as a starting point for evaluation. 
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performed across our test validation sets. 

3.3.4. DeepAR 
The DeepAR (Salinas et al., 2020) algorithm produces a probabilistic 

forecast based on training an auto regressive LSTM-based recurrent 
neural network. As with other methods, exogenous features can be used 
to potentially improve the forecast as long as they are also available 
during the prediction horizon. While multiple streams of target variables 
may be used, we are only utilizing DeepAR for a single target value, the 
surface_traffic. One of the advantages of DeepAR is that it learns 
encodings for times series at the granularity that is most effective so the 
periodicities we discussed earlier do not need to be discovered or 
included. As with the other models, DeepAR has a set of hyper param-
eters that can impact its behavior, such as learning rate, number of 
epochs, and the mini-batch size, and we vary these over a reasonable set 
of values to tune the parameters to this problem and evaluate them on 
the test validation sets. 

We are primarily interested in evaluating how well or poorly each 
model predicts the traffic across three forecast periods: 30 minutes, 1 
day, and 1 week. We refer to the 30 minute forecast as the observation 
forecast, because it is the frequency of our input data set and is, there-
fore, a measure of how well our models predict each observation. We 
split our data into training and test sets for cross-validation by selecting 
three full days that represented a high, medium, and low demand. We 
did this by selecting the six month period between April and September 
of 2019 and calculating the cumulative sum of surface traffic each day, 
and then used the 85% percentile for the high demand day, 50% 
percentile for the medium demand day, and the 15% percentile as the 
low demand day. Fig. 6 shows the three days highlighted against a 
backdrop of all the days during this period. The grey background shows 
the spread of all the data. 

These three days do not represent the average behavior that we 
would expect, but rather indicate how well the algorithms will perform 
across different demands. We also evaluate the single day forecast on a 
random sample of 30 days using the best hyper-parameters learned on 
these three cross validation days. This larger test gives us a better 
indication of the expected behavior for our algorithms. 

The metric we used to identify effectiveness is the Root Mean 
Squared Error (RMSE) of the predicted traffic from the hold-out test set, 
where a lower value is best. For the 30 minute prediction, we walk 
forward for each day, resulting in a total of 144 (3*48) training runs for 
each algorithm and 144 comparisons for the RMSE calculation. The one 
day prediction also results in the same 144 comparison values for the 
RMSE, but only requires 3 training runs for the ARIMA family of algo-
rithms and the DeepAR algorithm. The simple machine learning models 
are still evaluated on each observation, but as mentioned earlier are only 
allowed lag variables that would be available (e.g. they can not use the 
lagged surface_traffic). Finally, the 1 week prediction uses the three 
cross-validation days as a starting point and forecasts 336 observations 
(3∗48) for a total of 1, 008 comparisons in the RMSE. For discussion, we 
also compute the Mean Absolute Percent Error (MAPE) for each of the 
tests we run. 

3.4. Integration with microsimulation 

The second goal we have is to integrate the model prediction into a 
microsimulation of the DFW airport to understand how events, such as 
an increase in scheduled flights or a lane closure, will impact the 
congestion at the curb. The traffic forecast is the expected number of 
passenger vehicles at all the terminals for a given 30 minute period of 
time. For the microsimulation to be useful, we need to split this forecast 
into groups whose destination is one of five terminals: A, B, C, D, or E. 
We estimate this by using the distribution of flights that utilize each 
terminal and then make the assumption that the traffic obeys a similar 
distribution. This distribution is based on a sample of data that is 
aggregated and not available at the detail that would allow us to use as 
part of the prediction process. 

We built the SUMO microsimulation model from a road network and 
a demand model comprised of various route trips. For the network, we 
extracted the DFW airport from Open Street Map. The network captures 
various attributes of the airport geometries, and validation of this 
network is necessary for accurate results. For the demand side of the 
model, we utilized predicted traffic demand forecasts from the fitted 
predictive model. 

We made several assumptions during the construction of the vehicle 
trips. Since the predictive model does not account for explicit control 
plaza entrance and exits of each vehicle, we used entrance and exit 
distributions derived from the control plaza data and sampled from the 
observed daily distribution to create a trip. For example, 55% of trips 
entered through the north control plaza with 80% of the trips exiting the 
same control plaza from which they entered. The only exception was for 
pass-through traffic which exited the opposite control plaza 80% of the 
time. For future work, we plan on breaking up these distributions 
temporally (e.g. hourly) and generalizing our assumptions based on 
daily, monthly, and yearly sampling for improved likelihoods. We also 
assumed curbside pickup and drop-off dwell times of 120 seconds on 
average sampling from a discrete distribution. DFW airport records the 
actual dwell time distributions, and our future work will integrate these 
observations. 

SUMO is capable of various outputs, which include but are not 
limited to: emissions, fuel consumption, trip duration, speed, relative 
speed, detailed trajectories, and waiting times due to congestion. we can 
usee these outputs when simulating future demand to determine if there 
will be increase congestion in the CTA. For example, in addition to 
waiting times, if the trip duration increases and the speeds decrease, 
there is reasonable evidence to assume we have some increased road 
congestion. Furthermore, we can visualize where in the CTA this is 
occurring and replay the events with different policies to see how best to 
mitigate a congested scenario. 

In summary, the SUMO microsimulation takes as input a demand 
schedule for every 30 minute period during the day and creates indi-
vidual vehicles in SUMO that have a terminal destination that follows 
the wait time distribution from the surface traffic data. This model does 
not need to be linked to a demand forecast to be useful. Operators could 
replay a particular high demand day to explore policies that would have 

Fig. 6. The three days chosen for cross-validation. The low, medium, and high refer to the level of traffic that occurred during the day for a six month period 
during 2019. 
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help congestion, or they might want to simulate a rough estimate of 
what they believe traffic will be like in a year on a high demand day. 

4. Results 

We executed several hundred runs for each algorithm on our three 
cross-validation days and across the three prediction horizons, which 
were 1, 48, and 336 steps, in order to tune the hyper parameters and find 
the most effective solutions. Table 1 shows the overall results for the best 
configuration for each algorithm across the three prediction horizons for 
both the RMSE (1a) and the MAPE (1b). At a high level, both the Baseline 
and ARIMAX algorithms were less effective than the other four algo-
rithms, but the SARIMAX algorithm performed better than with a sea-
sonal lag of 48, which is one day at our sampling rate. The best 
prediction was DeepAR for the 1 and 48 steps level. SVR performed best 
at the weekly forecast (336 steps) when measured by RMSE, but 
XGBoost had the lowest MAPE. 

When predicting the next 30 minutes of surface traffic, the top five 
algorithms: DeepAR, SARIMAX, linear, SVR, and XGBoost all preformed 
well. Fig. 7a shows the results of DeepAR on the low demand cross- 
validation day using a walk forward prediction of 30 minutes. The 
right-most graphs in Fig. 7a show the residual quantiles as a function of 
normal quantiles (middle graph) and the distribution of the residuals in 
the far right graph. The residuals are fairly normal with a slight skew and 
some evidence of heavier tails. The left-most graph in Fig. 8 shows the 
performance of DeepAR, SARIMAX, SVR, and XGBoost broken down by 
cross-validation day. We observe that the low demand day is easiest for 
all algorithms and that they all perform well on this set of days for this 
time horizon of 30 minutes, with DeepAR performing the best. 

The day and week predictions are not as effective or as consistent. 
Fig. 8 shows the RMSE for the top algorithms based on the cross- 
validation day. Here we observe that the classic machine learning al-
gorithms SVR and XGBoost appear to be more consistent; that is, they 
exhibit less variation in their RMSE values but do not find the most 
effective solutions. Fig. 7b shows the medium demand day for DeepAR 
which is its least effective cross-validation day. The left-most graph 
shows how DeepAR misses a critical peak between 16 and 20 h and then 
under-predicts demand between hours 20 and 24. This is reflected in the 
longer tails of the residual distribution plots. 

In order to explore how the degree of consistency among normal days 
may lead to forecasting errors on abnormal days, we selected 30 days at 
random from the last year of our data, re-trained, and tested our top 

algorithms on these new cross validation days with the hypothesis that 
the further away a day is from the average day, the more difficult it 
would be to predict. The day that most closely resembles the average 
demand for the last year of data we have is August 13, 2019. It is the day 
the differs the least from the computed mean demand during the FY19 
year. Each of the 30 days were assigned a demand value based on their 
total demand; if the day’s demand was 5000 more than the average day 
we categorized it as a high demand day. Similarly, if the demand for the 
day was 5000 lower than the average demand day we categorized it as a 
low demand day. All other days are considered and denoted medium 
demand. The 10,000 vehicle range we used is about 20% of the average 
total vehicle demand. 

The left-most graph in Fig. 9 shows the RMSE distributions for all 
solutions based on total daily demand. As can be seen in the figure, low 
and high distributions include much less effective forecasts and their 
standard deviations are about twice that of the medium distribution. 
Statistically they are not the same distributions. The right-most graph in 
Fig. 9 shows the RMSE values as a function of the distance from each 
cross validation days to the average day measured as RMSE. The dashed 
45 degree line represents how well each cross validation day would have 
performed if we used the average day as a prediction. This means that 
when algorithms fall below this line, they out performed this naive 
forecast. This graph also suggests that days with demand curves that are 
increasingly different from the average day are more difficult to predict. 
These results suggests that long-term forecasts pose a greater challenge 
compared to short term forecasts, particularly for high demand days. 
DeepAR has the lowest RMSE for the 30 samples, and although the 
standard deviation of the algorithms tested is similar, its results are not 
statistically significant. 

5. Case study 

To present how microsimulations may be used in practice with a 
demand prediction model, we developed a case study to demonstrate 
how different traffic control strategies influence congestion and energy 
consumption for high-volume days. We simulated a high-volume day 
(Monday, June 11th, 2018) with 20% additional demand resulting in a 
total of around 72,000 vehicles traveling to or from the airport during 
the 48 half-hour periods during the day. We considered two different 
control policies for trips in/out of the airport: intervention with policy and 
no intervention, with vehicles taking the shortest path to their assigned 
destination. The no intervention policy assumes all vehicles take the 
shortest path calculated at their departure time for their trip, without 
accounting for predicted changing traffic conditions. The intervention 
with policy strategy assumes departure vehicles are informed of antici-
pated congestion at their destination terminal using, for example, our 
predictive model. Accordingly, they are advised to use another terminal 
or parking lot to be dropped off to mitigate congestion. The intervention 
policy is implemented with the assumption that 50% of people will obey 
the recommendation. For an airport like DFW where passengers can 
easily travel between terminals, this is a realistic policy. 

The results of the two scenarios are shown in Fig. 10. Looking at the 
results from SUMO, we notice that the intervention with policy performs 
the best during peak demand on the network. With further investigation, 
we found that during the peak hour from 6:00am to 7:00am, the policy 
saved 34.4% of fuel consumption compared to no intervention. Addi-
tionally, the intervention with policy saved each trip 4.47 minutes per trip 
on average during the peak hour. That equates to a 38.9% savings on trip 
duration at the airport during that high demand period. Other notable 
findings in the results showed how mean relative speed was affected 
positively by the policy. Mean relative speed is the ratio of observed 
average speed over posted speed. Thus, lower values can be used as 
proxies for congestion, and values near 1.0 can be considered free- 
flowing traffic. Lastly, we observed from the mean travel time diver-
gence that occurs in the morning peak demand. This divergence is also 
reflected in the vehicles currently running by showing that the no 

Table 1 
RMSE and MAPE.  

(a) RMSE 

prediction_length 1 48 336 

Algorithm (30 minute) (1 day) (1 week) 

Baseline 270.0 270.0 272.0 
ARIMA 112.0 254.0 307.0 
DeepAR 67.0 103.0 151.0 
Linear 72.0 133.0 162.0 
SARIMAX 71.0 137.0 185.0 
SVR 75.0 137.0 147.0 
XGBoost 74.0 135.0 156.0 

(b) MAPE 

prediction_length 1 48 336 

Algorithm (30 min) (1 day) (1 week) 

Baseline 0.90 0.90 0.72 
ARIMA 0.22 0.78 1.01 
DeepAR 0.08 0.16 0.20 
Linear 0.12 0.26 0.24 
SARIMAX 0.11 0.24 0.24 
SVR 0.14 0.32 0.30 
XGBoost 0.11 0.16 0.18  
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intervention policy dissipates the volume demand slower than the inter-
vention with policy. 

These scenarios are introductory inquiries into future work on 
curbside congestion management. The traffic demand and curbside 
dynamics still need to be calibrated with ground truth observations to 
get more realistic results. In future work, we plan to use the SUMO 
microscopic model and demand framework to study the impact of 
airport infrastructure modifications on curbside congestion. 

6. Conclusion 

Here we have presented a first of its kind, data-driven operational 
model for airport traffic combining a demand forecast with a micro-
simulation of the CTA. Our hope is that the airport operations team at 
DFW could use this framework in the future to both forecast near term 

and medium term demand in the CTA in real-time and understand the 
implications on the current state of the road network. This framework 
could assist airports like DFW as they tackle daily operational chal-
lenges, explore the integration of emerging technology, and plan the 
expansion of their services in the long term. Operators of our model 
could simulate novel scenarios to explore potential policy and infra-
structure changes by replaying high demand periods, or even increasing 
demand as we did in the case study. 

We have shown that several models are capable of capturing the 
strong daily trend observed in the data at DFW airport and are effective 
in predicting traffic during the next 30 minutes. Forecasts for the one 
day and single week ahead pose more challenge for the models, and 
there may be room for improvement to achieve high fidelity results on 
these time scales. The highest and lowest demand days are the most 
difficult to forecast for the models we tested and more work is needed in 

Fig. 7. DeepAR results: The top graph 7a shows an effective 30 min forecast. As the forecast period gets longer, DeepAR is less effective, as shown in the bot-
tom graph. 

Fig. 8. A graphical version of the RMSE results from Table 1a broken down by cross-validation day.  
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this area to produce highly accurate longer-term demand forecasts 
around extremes. A key motivation for this work is to develop a uni-
versal framework for operational modeling of traffic demand at the 
airport complex that could be used by any airport. In future work we 
intend to build out this capability as part of a production system avail-
able to DFW and other airports that would like to participate. Finally, 
the code we used for the experiments in this paper, as well as the two full 
years of surface traffic and weather data, are publicly available at 
https://github.com/NREL/ATHENA-forecast and https://github. 
com/NREL/ATHENA-sumo. 
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