
Applying Models of User Activity for Dynamic Power
Management in Wireless Devices

Caleb Phillips1, Suresh Singh2, Douglas Sicker1, Dirk Grunwald1

1Department of Computer Science, University of Colorado, Boulder, Colorado, USA
2Department of Computer Science, Portland State University, Portland, Oregon, USA

caleb.phillips@colorado.edu, singh@cs.pdx.edu, {sicker,grunwald}@colorado.edu

ABSTRACT
In this paper we use a large dataset of wireless user activ-
ity traces to test the various dynamic power management
schemes. We also present and test our own empirically-
driven dynamic power-saving algorithms, which are based on
prior observations of user activity patterns. We believe that
this sort of analysis can guide adoption of a user-behavior
driven approach to radio and communications power man-
agement, and, in networking-centric devices, power manage-
ment for the entire device. Additionally, understanding the
characteristics of user-activity and efficient mechanisms to
predict this activity can help inform the design of power-
saving schemes for future networking protocols.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User/Machine Systems;
D.4.8 [Operating Systems]: Performance—Modeling and
prediction; C.2.1 [Computer-Communication Networks]:
Network Architecture and Design—Wireless communication

General Terms
Algorithms, Human Factors, Measurement, Performance

1. INTRODUCTION
Networked mobile devices have become an indispensable

part of our lives today. And, as such, there are continual
efforts at increasing their capabilities while making them
more energy efficient.

Although low-level architectural power-saving is becom-
ing commonplace in mobile systems and huge leaps are be-
ing made, dynamic power-saving schemes at a high level
have failed to be adopted by industry. Indeed, the current
state-of-the-art is a näıve method of powering-down after a
long idle period - a system which is completely agnostic to
user activity patterns and is greatly inefficient as a result.
Moreover, wireless protocols as they are implemented pro-
vide only crude power-saving functions, which are similarly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobileHCI 2008, September 2-5, 2008, Amsterdam, the Netherlands.
Copyright 2008 ACM 978-1-59593-952-4/08/09 ...$5.00.

agnostic to the actual usage patterns of wireless devices. Al-
though the dynamic power management (DPM) literature
has suggested several good algorithms, these have failed to
be implemented. In fact, it may be the large number of very
different and often complicated algorithms, among which
there is no clear winner, that has prevented adoption.

In this paper we aim to use a large and novel dataset
of wireless user activity traces to test the various DPM al-
gorithms at making power-saving decisions. We will also
present and test our own emperically-driven dynamic power-
saving algorithms, which are based on prior observations
about user activity patterns [13]. We believe that this sort
of analysis can guide adoption of a user-behavior driven ap-
proach to radio and communications power management,
and, in networking-centric devices, power management for
the entire device. Additionally, understanding the charac-
teristics of user-activity and efficient mechanisms to pre-
dict this activity can help inform the design of power-saving
schemes for future networking protocols.

2. RELATED WORK
For more than fifteen years, predictive power management

techniques have been appearing in the literature. Due to
this, there is no lack of variety in terms of approach. How-
ever, sometimes a wealth of varied approaches can be a bur-
den.

Some of the first work on predictive power consumption
was carried out by Wilkes et al. of the Hewlett-Packard
Laboratories with the target application of predictive hard-
disk spin-down [19]. In [5], Golding et al. present an early
taxonomy for power-saving techniques and propose the idea
of idle-tasks – work which can be accomplished while the
device is otherwise idle. They propose several predictors and
prediction filters (called “skeptics”), and ultimately conclude
that simple window-based predictors and backoff techniques
outperform the more complex configurations. In addition to
those which concern themselves with hard-disk spin-down,
some other early work considered dynamic frequency scaling
for processors. In [6], Govil et al. suggest approaches which
use local information (a brief history of inactivity periods)
and a smoothing function to make predictions.

Another set of approaches explored were more concerned
with the general case of system shutdown, or deriving multi-
state learning models which could be applied to any device
or combination of devices. In [18], Srivastava et al. use re-
gression analysis to derive a best-fit to traces of user-activity
in X sessions and attempt to do power-saving on a very
fine scale (in terms of tens of milliseconds). Hwang and

Wu propose a simple methodology which uses a weighted
average of past idle periods. More complex approaches in-
clude [11], where Benini et al. suggest a stochastic opti-
mization methodology for deriving an optimal power policy
formalized as a Markov model which is not altogether dis-
similar from [14] where the authors suggest a scheme based
on a continuous-time Markov decision process. Another very
complex solution, also due to Benini et al., suggests the use
of an adaptive learning tree [4]. In [8], Irani et al. propose
a elegant model which can handle an arbitrary number of
power-saving states and learns a probabilistic model from
experience. The authors also prove the solution is at least
two-competitive.

More recent work has started to approach the problem
of dynamic power-saving from the perspective of network-
ing devices and mobile systems – it is this work which most
directly addresses the problem space we are interested in.
In [17], the authors used a small, contrived, dataset to de-
rive a distributional fit for idle times, and then use this to
make predictions. In [10], the authors analyze simple one
and two-second timeouts for mobile communication, leaving
an adaptive approach to later work. Finally, there are a
few papers that address dynamic power-saving specifically
from the perspective of infrastructure-mode IEEE 802.11
WLANs. In [9], Krashinsky and Balakrishnan present an el-
egant bounded backoff approach that outperforms the stock
802.11 power-saving scheme, but is not the least bit empiri-
cally derived. In [16], Sheth and Han propose a combination
of selective radio activation and adaptive power control using
a per-server (from the perspective of client traffic) exponen-
tially weighted moving average. Finally, the work of Chen
et al. in [3] serves as a representative of newer work which
considers power-saving decisions in an application-specific
manner (VoIP in their case).

Despite the rich history of approaches, our observation is
that none, or very few, of these models take advantage of the
small and stochastically distributed idle periods in real user
traces. Additionally, most of them are not thoroughly tested
against realistic user traces, nor is there much consensus as
to which among them is best for any given domain. Indeed,
although some specific architectural components are recently
benefiting from power-saving schemes (hard-disks and CPUs
are prime examples), general dynamic and user-behavior-
driven power-saving has not been adopted by industry [2]
– in many ways the state of the art is a simple method
of powering down components after a long idle period - a
scheme which is agnostic to actual user activity patterns.
For this reason, we approach a simple but widely applicable
subset of the dynamic power-saving problem with a large
dataset of real user traces and no initial hypothesis about
which method should prevail (besides hoping it is a simple
one).

3. EXPERIMENT
In this section, we will discuss the dataset we used, the

subset of the general power-saving problem we have target-
ted, and the various algorithms we implement and analyze.

3.1 Datum
For our dataset, we use 236 unique, publicly available [1],

user-traces which were recorded using passive vicinity sniff-
ing techniques in a variety of locations:

• PDX/VWave2006: A collection of traces collected at
public hotspots around Portland, Oregon using a Veri-
Wave sniffer with nanosecond resolution timing. The
initial characterization of these traces is in [12].

• UW/SigComm2004: A subset of the traces collected
by University of Washington researchers at SigComm
2004. Some characterization of these traces is in [15].

• Microsoft/OSDI2006: A subset of traces collected by
Microsoft researchers at OSDI 2006. Specifically we
used the traces from sniffers S4 and S5 concerning two
APs.

We randomly subdivide these 236 user-traces into a 118
trace training set, which is used to train those dynamic
power-saving algorithms which have a training phase, and a
118 trace test set to test all the algorithms. Our test traces
range in length from 6 to 34,766 one second buckets, with
an average length of 11,057 (3.07 hours). On average, only
8.55% of those buckets are active.

3.2 Algorithms
Although one can imagine a power-saving algorithm of

almost any complexity, we feel it is useful to use a very
common use-case as a benchmark. Specifically, we are inter-
ested in a two-state model, where the device can be either
on or off. Additionally, we have discretized our traces into
one-second buckets (tbucket = 1) and are only interested in
predictions on this level of granularity. This bucket size was
chosen based on a trade-off between average human motor
response times and minimization of effects due to 802.11
DCF contention in the traces [13]. Finally, we make the as-
sumptions that our hypothetical hardware can go to sleep
and wake back up in two-seconds (tpd = 2) and that one
second (i.e., one bucket, tmin = 1) is the minimum desirable
sleep time – these parameters are based on correspondence
with industry [2].

We implemented 9 algorithms from the literature, as well
as two new algorithms based on our work in [13] (M, MLL,
and MLC below). In some cases, the algorithms had to be
adapted slightly to fit our problem definition. Following is
a brief description of each:

• M: An algorithm which predicts the state of the next
bucket, using the four-state Markov model presented in
[13] and the empirical parameters trained from sleep-
less clients (i.e., only those with power-saving disabled).
It makes the prediction by calculating the worthwhile-
ness value for a number of seconds we are considering
to sleep, x. w(x) is defined as the probability of tran-
sitioning to any idle state in both Rx and Tx and for
the next tmin + tpd + x states also being idle. At each
prediction point, we calculate the value of w(x) and
choose to sleep if the value is higher than some thresh-
old (pthresh = 0.582), which is the optimal value we
derived from the training data.

• BSD: An algorithm based on the work in [9], but more
coarse, with the minimum sleep time set to tcost and
the backoff in terms of seconds (not hundreds of mil-
liseconds).

• MLC and MLL: A modified version of M algorithm
which adjusts the pthresh in 0.001 increments in re-
sponse to mistakes. There is a liberal version (MLL)

Percentage Difference from Optimal

Percentage Difference

A
lg

or
ith

m

AT

BAG

BSD

EWM

HE

IRA

ISW

M

MLC

MLL

SR

ST

SWC

SWL

10^−2 10^−1 10^0 10^1 10^2

(a) Difference from optimal power-down percentage for each
algorithm and each trace.

Probability of Error

Error Probability

A
lg

or
ith

m

AT

BAG

BSD

EWM

HE

IRA

ISW

M

MLC

MLL

SR

ST

SWC

SWL

10^−3 10^−2 10^−1

(b) Error rate for each algorithm and each test trace.

Figure 1: Performance of the Algorithms

and a conservative version (MLC). The conservative
version starts with the optimal pthresh = 0.582. The
liberal version starts with a small pthresh = 0.2, and
grows it to fit the user behavior.

• SR: Makes use of the X-session derived regression equa-
tion in [18].

• ST: A simple timeout approach not dissimilar from
those studied in [10]. This one sleeps for 60 seconds
after observing a two-second idle period.

• SWL and SWC: In some sense, this algorithm is the
state of the art for system-shutdown. In the liberal
case (SWL), we sleep permanently (or until woken by
the user) after 2 minutes of idle time - this corresponds
to the most aggressive setting in the Microsoft Win-
dows Vista operating system. The conservative version
(SWC), which corresponds to the Windows Vista de-
fault, sleeps permanently after 5 minutes of idle time.

• IRA and ISW: A probabilistic power-saver based on
the work in [8]. Our implementation differs from that
presented by the authors in that it does not reason
about the power-cost of switching states, and simply
uses the windowed histogram they suggest to make a
prediction about idle period length. We tested the
algorithm both with a global memory (IRA), and a
windowed memory of 100 buckets (ISW).

• AT: A very complex algorithm from [4]. It is a combi-
nation of tree learning, with a lower-envelope power-
function, and a branch-prediction-like saturating con-
fidence measure. Their original method is for an ar-
bitrary number of states. Here we have implemented

the trivial case of 2 power states - off and on. In this
case the behavior of the algorithm is to use the learn-
ing tree to decide whether to sleep based on a global
history and then to sleep for 1 second, wake up for 2
seconds and then go to sleep forever (presuming there
is no active period in there). The learning tree has a
branching factor of the number of states and a max-
imum depth of the global history. Hence, a system
with 5 power states and an hour of history might have
53600−1 leaves.

• BAG: A simple backoff-based power-saver using the
work in [5]. Golding et al. found that the best perfor-
mance in their tests came from an arithmetic backoff
that decreases geometrically on error. Hence, that is
what we have implemented. It should be noted that [5]
is focussed on hard-disk spin-down, so while the algo-
rithm applies, their dataset (and therefore conclusions)
might not fit our problem.

• EWM: An algorithm from [16] which makes predic-
tions using an exponentially weighted moving average
(and an exponentially weighted moving deviation). If
the device is still idle after the predicted idle period
(timeout), then it sleeps with an exponential back-
off. The authors suggest using per-server statistics
and taking the maximum timeout, but we are using
an aggregate statistic.

• HE: An exponential averaging approach proposed by
Hwang et al. in response to Srivastava et al. [7].

Each algorithm is analyzed in terms of its effectiveness
with respect to two variables: performance gap, which is
the difference in percentage of buckets powered-down from

the optimal algorithm (which always makes the best deci-
sion) and error probability, the probability that the algo-
rithm sleeps too long and the user must intervene to wake
it up. These metrics correspond to Type I and Type II er-
ror respectively. An overzealous algorithm will suffer from
a large error probability, while an overly conservative algo-
rithm will have a large performance gap. A good algorithm
is characterized by both a small performance gap and a small
error probability.

4. RESULTS
Figure 1(a) shows the performance gap of each algorithm

with respect to the optimal. We can see that many algo-
rithms succeed in power-saving much of the time. Clear win-
ners are the simple timeout algorithm (ST), liberal learning
version of our algorithm (MLL), sleep-until-woken (SWL

and SWC), simple backoff-based algorithm (BAG), and
adaptive tree algorithm (AT). However, this metric must
be carefully weighed against the probability of error, which
is shown in figure 1(b).

Among those algorithms which performed well in terms
of performance gap, the least erroneous are the simple time-
out (ST), the backoff-based algorithm (BAG), our simple
learning algorithm (MLL), and the adaptive tree algorithm
(AT). The mean error rates are 0.0232, 0.031, 0.030, and
0.0231 respectively. Recall that in the two-state formula-
tion and with our givens (tpd, tmin), the AT algorithm uses
its predictor to decide to sleep for 1 second, wakes up for
two seconds, and then goes to sleep forever. Indeed, for
all its additional complexity, the AT algorithm is only very
slightly better performing than the extremely simple time-
out algorithm (ST).

5. CONCLUSION
This paper considers the question: can better and simpler

device-level power management be achieved by using models
of user activity? Previous approaches have either been too
simplistic (long, arbitrary timeouts as used in most laptops
and other devices today) or too complicated (that maintain
significant state in order to make decisions). We have shown
that very complex algorithms only show marginal improve-
ment over simpler algorithms. In fact, a simple short time-
out performs as well as nearly all the other algorithms. We
contend that in many cases, an appropriately sized timeout,
will be competitive with even the most complex learning al-
gorithms and will outperform long arbitrary timeouts. Ad-
ditionally, we observe an understanding of underlying user
activity patterns is necessary in order to make appropriate
decisions in the design of dynamic power management algo-
rithms.

6. REFERENCES
[1] Crawdad. http://crawdad.org, Feb 2008.

[2] Private communication with intel, hillsboro. 2008.

[3] Y. Chen, N. Smavatkul, and S. Emeott. Power
management for voip over ieee 802.11 wlan. Wireless
Communications and Networking Conference, 2004.
WCNC. 2004 IEEE, 3:1648–1653 Vol.3, 21-25 March
2004.

[4] E.-Y. Chung, L. Benini, and G. De Micheli. Dynamic
power management using adaptive learning tree.
Computer-Aided Design, 1999. Digest of Technical

Papers. 1999 IEEE/ACM International Conference
on, pages 274–279, 1999.

[5] R. Golding, P. Bosch, C. Staelin, T. Sullivan, and
J. Wilkes. Idleness is not sloth. In TCON’95:
Proceedings of the USENIX 1995 Technical
Conference, pages 17–17, Berkeley, CA, USA, 1995.
USENIX Association.

[6] K. Govil, E. Chan, and H. Wasserman. Comparing
algorithm for dynamic speed-setting of a low-power
cpu. In MobiCom, pages 13–25, New York, NY, USA,
1995. ACM.

[7] C.-H. Hwang and A. C.-H. Wu. A predictive system
shutdown method for energy saving of event-driven
computation. ACM Trans. Des. Autom. Electron.
Syst., 5(2):226–241, 2000.

[8] S. Irani, S. Shukla, and R. Gupta. Online strategies
for dynamic power management in systems with
multiple power-saving states. Trans. on Embedded
Computing Sys., 2(3):325–346, 2003.

[9] R. Krashinsky and H. Balakrishnan. Minimizing
energy for wireless web access with bounded
slowdown. Wirel. Netw., 11(1-2):135–148, 2005.

[10] R. Kravets and P. Krishnan. Power management
techniques for mobile communication. In MobiCom
’98: Proceedings of the 4th annual ACM/IEEE
international conference on Mobile computing and
networking, pages 157–168, New York, NY, USA,
1998. ACM.

[11] G. A. Paleologo, L. Benini, A. Bogliolo, and G. D.
Micheli. Policy optimization for dynamic power
management. In Design Automation Conference, pages
182–187, 1998.

[12] C. Phillips and S. Singh. Analysis of wlan traffic in the
wild. In IFIP Networking, 2007.

[13] C. Phillips and S. Singh. An empirical activity model
for wlan users. In IEEE INFOCOM MiniSymposium,
2008.

[14] Q. Qiu and M. Pedram. Dynamic power management
based on continuous-time markov decision processes.
DAC, 00:555–561, 1999.

[15] M. Rodrig, C. Reis, R. Mahajan, D. Wetherall, and
J. Zahorjan. Measurement-based characterization of
802.11 in a hotspot setting. In E-WIND, pages 5–10,
New York, NY, USA, 2005. ACM.

[16] A. Sheth and R. Han. Adaptive power control and
selective radio activation for low-power
infrastructure-mode 802.11 lans. Distributed
Computing Systems Workshops, pages 812–818, 19-22
May 2003.

[17] T. Simunic, L. Benini, P. W. Glynn, and G. D.
Micheli. Dynamic power management for portable
systems. In Mobile Computing and Networking, pages
11–19, 2000.

[18] M. B. Srivastava, A. P. Chandrakasan, and R. W.
Brodersen. Predictive system shutdown and other
architectural techniques for energy efficient
programmable computation. IEEE Trans. Very Large
Scale Integr. Syst., 4(1):42–55, 1996.

[19] J. Wilkes. Predictive power consumption. Technical
report, Hewlett-Packard Laboratories, 1992.

