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Abstract. In this paper we make use of a large set of measurements
from a production wireless network in rural New Zealand to analyze the
performance of 28 path loss prediction models, published over the course
of 60 years. We propose five metrics to determine the performance of
each model. We show that the state of the art, even for the “simple”
case of rural environments, is surprisingly ill-equipped to make accurate
predictions. After combining the best elements of the best models and
hand-tuning their parameters, we are unable to achieve an accuracy of
better than 12 dB root mean squared error (RMSE)—four orders of
magnitude away from ground truth.

1 Introduction

Modeling the propagation of a wireless transmitter in a complex environment
has entertained scientists for at least sixty years. The result is a staggering num-
ber of proposals of just about every shape, size, and approach imaginable. The
basis for this level of interest is solid—predicting the attenuation of transmit-
ted signals with high precision has very important applications in the design,
trouble-shooting, and simulation of wireless systems.

Despite the large quantity of work done, we recognize an important shortcom-
ing: there have been relatively few comparative evaluations of path loss predic-
tion models using a sufficiently representative dataset as a basis for evaluation.
Those studies that do exist make comparisons between a small number of similar
models. And, where there has been substantial work of serious rigor done, for in-
stance in the VHF bands where solid work in the 1960’s produced well validated
results for analog television (TV) propagation, it is not clear how well these
models work for making predictions outside their intended coverage (i.e., fre-
quency, distance, environment type, etc.). The result is that wireless researchers
are left without proper guidance in picking among dozens of propagation models
from which it is not clear which is best or what the penalty is of using a model
outside of its intended coverage. This work provides a first step towards solving
that problem.



In this paper, we describe, implement, and analyze 28 propagation models
spanning 60 years of publications using five metrics to gauge performance. Al-
though many of these models are massively different from one another, they all
make use of the same basic variables on which to base their predictions: posi-
tion (including height and orientation) of the transmitter and receiver, carrier
frequency, and digital elevation model and land cover classification along the
main line-of-sight (LOS) transmit path. These models are a mix of approaches:
empirical, (purely) analytical, stochastic or some combination thereof. In the
present study, we are not including ray-tracing models (e.g., [11]) or partition
based models (e.g., [5]) which require substantial knowledge of the environment
which is seldom available at all, and rarely at the precision required to make
useful predictions. We are also not considering active-measurement models (e.g.,
[8]) which make use of in-situ measurements to correct their predictions. We
expect to analyze these more complex models in later work.

To perform our evaluation we use a large set of active measurements collected
from a production wireless network on the northern isle of New Zealand. This
network spans approximately 8300 square kilometers, containing more than 368
transceivers (with 1328 possible links, 1246 of which are under measurement),
and provides Internet connectivity to more than 740 clients. The network is built
using commercial off-the-shelf equipment (COTSE) and operates in the popular
bands of unlicensed spectrum at 2.4 and 5.8 GHz. All of the measurements we
use will be released to the community to enable comparative evaluations.

2 Related Work

The vast majority of existing work analyzing the efficacy of path loss models
has been carried out by those authors who are proposing their own improved
algorithm. In such cases, the authors collect data in an environment of inter-
est and show that their model is better able to describe this data than one
or two competing models. Unfortunately, this data is rarely published to the
community, which makes comparative evaluations impossible. One noteworthy
exception is the work of the COST-231 group in the early 1990’s, which pub-
lished a benchmark dataset (900 MHz measurements taken in European cities)
[3]. This effort produced a number of well-validated models which are tuned for
900 MHz transmitters in urban environments. We consider all of the proposed
COST-231 models in our analysis here. The COST-231 data, being collected in
an urban environment, is inappropriate for our present work, but we expect to
use it in future work.

There are several studies similar to our own that compare a number of models
with respect to some data. In [4], the authors compare five models with respect to
data collected in rural and suburban environments with a mobile receiver at 910
MHz. They discuss the abilities of each model, but abstain from picking a winner.
In [1], the authors compare three popular models to measurements collected at
3.5 GHz. The authors highlight the best of the three, which turns out to be the
ECC-33 model proposed in [6]. In [9], Sharma et al. do a very similar analysis,



but instead focus on measurements made in India at 900 and 1800 MHz. In
contrast to [1], they find that the SUI and COST-231 models perform best. We
believe our work here is the first to do an in-depth and rigorous analysis of a
large number of diverse propagation models using a large and realistic dataset

from a production network. And, it is the first such comparative study looking
at results for the widely used 2.4 and 5.8 GHz bands.

3 Measurement

Fig. 1: The largest of three disconnected sections
of the network (80x100km). Link width indicates
strength. Back-haul nodes (mainly 5.8 GHz) are
dark/black and CPEs are light/white.

The network used in our
study is a large commercial
network that provides Inter-
net access to primarily ru-
ral segments of the Waikato
region in New Zealand. Ev-
ery two minutes, each device
on the network transmits a
measurement frame at each
supported bit-rate. For this
study we only use measure-
ments from the lowest bit-
rate for each protocol (1 Mbps
for 802.11b/g and 6 Mbps for
802.11a). Meanwhile, each de-
vice uses a monitor mode in-
terface to log these measure-
ment frames.

The back-haul network is
composed of long distance
802.11a links operating at
5.8 GHz3. These are com-
monly point-to-point links
that use carefully steered
highly directional antennas.
The local access network is
composed of predominantly
802.11b/g links which provide
connectivity to client premise
equipment (CPEs). Often, an
802.11g access point with an
omnidirectional or sector an-
tenna will provide access to a dozen or more CPE devices which have directional
(patch panel) antennas pointing back to the access point. With few exceptions,
each node in the network is an embedded computer running the Linux operating
system which allows the use if standard open-source tools to perform measure-



ment and monitoring. All nodes under measurement use an Atheros-brand radio
and the MadWifi driver is used to collect frames in monitor mode and record
received signal strengths. In [2], we showed that this hardware is able to measure
signal strength at a sufficient accuracy for path loss modeling.

After collection, the data requires fairly substantial scrubbing. We discard
any frame that arrives with its checksum in error or those from a source that
produces less than 100 packets. The remaining packets are used as an oracle to
analyze the performance of the propagation models. For this particular analysis
we use one week of data collected between July 25th, 2010 and August 2nd,
2010. Because detailed documentation about each node simply did not exist
prior to our study, some assumptions were made for analysis. The locations of
nodes for which there is no specific GPS reading are either hand-coded, or in
the case of some CPEs, geo-coded using a street address. Antenna orientations
for directional antennas are assumed to be ideal—pointing in the exact bearing
of their mate. All nodes are assumed to be positioned 3m off the ground, which
is roughly correct for the vast majority of nodes. While these assumptions are
not perfect, and are clearly a source of error, we feel that they are as accurate
as is feasible for a network of this size and complexity. Certainly, any errors in
antenna heights, locations, or orientations are on the same scale as those errors
would be for anyone using one of the propagation models we analyze to make
predictions about their own network.

In the end, our scrubbed data for a single week constitutes 19,235,611 mea-
surements taken on 1328 links (1262 802.11b/g links at 2.4 GHz and 464 802.11a
links at 5.8 GHz) from 368 participating nodes. Of these nodes, the vast ma-
jority are clients and hence many of the antennas are of the patch panel va-
riety (70%). Of the remaining 30%, 21% are highly-directional point-to-point
parabolic dishes, 4.5% are omnidirectional, and 4.5% are sector antennas. We
believe this dataset is of sufficient scope and diversity to justify the claim that
it is representative of a large class of wireless networks which have similar char-
acteristics and operating frequency.

4 Models

Table 1 provides details of the models evaluated in this study. We subdivide
models into five categories: Foundational models, which are purely theoretical
and (often) form the core of more advanced models, Basic models, which are
the majority and typically include empirical corrections from measurements and
often require special tuning parameters for the environment type, Terrain mod-
els, which expand on the basic models by including terrain features into their
calculations, and Supplementary models, which are not able to stand on their
own but instead are used to make corrections to existing models.

At a high level, a model’s task is to predict the value of Lt + Ls in this
log-domain equation:

3 Atypically liberal power regulations in New Zealand and Australia around 5.8 GHz
allow for much longer links than can be seen in most other places in the world.



Name Short-Name Category Year

Friis’ Freespace friis Foundational 1946
Egli egli Basic 1957

Hata-Okumura hata Basic 1968
Edwards-Durkin edwards Basic/Terrain 1969
Alsebrook-Parsons alsebrook Basic/Terrain 1977
Blomquist-Ladell blomquist Basic/Terrain 1977

Longley-Rice Irregular Terrain Model (ITM) itm Terrain 1982
Walfish-Bertoni bertoni Basic 1988

Flat-Edge flatedge Basic 1991
COST-Hata/Cost-231 cost231 Basic 1993

Walfish-Ikegami walfish Basic 1993
Two-Ray (Ground Reflection) two.ray Foundational 1994

Hata-Davidson davidson Basic 1997
Erceg-Greenstein erceg Basic 1998

Directional Gain Reduction Factor (GRF) grf Supplementary 1999
Rural Hata rural.hata Basic 2000
ITU Terrain itu Terrain 2001

Stanford University Interium (SUI) sui Basic 2001
Green-Obaidat green Basic 2002
ITU-R/CCIR itur Basic 2002

ECC-33 ecc33 Basic 2003
Riback-Medbo fc Supplementary 2006
ITU-R 452 itur452 Terrain 2007
IMT-2000 imt2000 Basic 2007
deSouza desouza Basic 2008

Effective Directivity Antenna Model (EDAM) edam Supplementary 2009
Herring Air-to-Ground herring.atg Basic 2010

Herring Ground-to-Ground herring.gtg Basic 2010

Table 1: Models Studied along with their categorization, citation, and year of
(initial) publication.

Pr = Pt − (Lt + Ls + Lf (t)) (1)

Where Pr and Pt are the received and transmitted power and the total
path loss is the sum of Lt, the trivial free-space path loss, Ls, the loss due to
shadowing/slow-fading from large unmoving obstacles like mountains and build-
ings, and Lf (t), the small-scale/fast fading due to destructive interference from
multipath effects and small scatterers (which varies with time t). Models can-
not, without perfect knowledge of the environment, be expected to predict the
quantity Lf (t). In most applications, this additional error is computed “stochas-
tically” using a probability distribution. For the protocols used in our study,
however, this quantity tends to be small due to the averaging effect of wide-
band modulation schemes [10].

It is worth noting that among the models we study, only very few were
designed with the exactly sort of network we are studying in mind. Indeed, some
are very specific about the type of environment in which they are to be used.
In this work, we pay little attention to these coverage requirements because



Overall Performance of Models
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Fig. 2: Overall model performance as described by (residual) root mean squared
error (RMSE) and spread-corrected RMSE (SC-RMSE). Spread corrected error
is adjusted (reduced) by the expected measurement spread on a given link.

we observe that they are not largely followed in the literature (the Longley-
Rice Irregular Terrain model, in particular, is frequently used well outside of its
intended coverage). In this study both appropriate and “inappropriate” models
are given an equal chance at making predictions for our network. We have no
starting bias about which should perform best.

5 Results

To obtain results, we ask each model to offer a prediction of median path loss for
each link in our network. The model produces an estimate of the loss L̂ which we
combine with known values to calculate the predicted received signal strength
Pr:

Pr = Pt +Gt(θ) +Gr(φ)− L̂ (2)

Where Gt is the antenna gain of the transmitter in the azimuthal direction
(θ) of the receiver and Gr is the antenna gain of the receiver in the azimuthal
direction (φ) of the transmitter. These gains are drawn from measured antenna
patterns (one for each type of antenna)[2]. The transmit power (Pt) is set to
18 dBm for all nodes, which is the maximum transmit power of the Atheros
radios our nodes use. For a given link, we calculate the median received signal
strength value across all measurements (P̄r). Then, the prediction error, ǫ, is the
difference between the prediction and the median measured value: ǫ = P̄r − Pr.

Some models come with tunable parameters of varying esotericism. For these
models, we try a range of reasonable parameter values without bias towards
which we expect to be best. To conserve space, in the following discussion and
figures we show results from only the 27 best performing models/configurations.

Figure 2 provides the overall performance of each algorithm in terms of
its RMSE. To account for underlying variance in the measurements, we use



Model Performance for All Links
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Fig. 3: Competitive and Individual Performance. Competetive performance is
the percentage of links a given model is the best predictor for. Individual per-
formance is the percentage of links a model makes a prediction within one (or
two) standard deviations of the correct value.

a “spread corrected” RMSE (ǫ̂) where the link’s measured standard deviation
(σ̄) is subtracted from the prediction error: ǫ̂ = |ǫ| − σ̄. This corrected RMSE
gives an idea of error in excess of expected variance due to temporal variation
(i.e., fast-fading and intrinsic/diurnal periodicity)4. As we can see, the best per-
forming models achieve an RMSE on the order of 15 dB. The best models are
the Alsebrook model (with its terrain roughness parameter set to 200m) at just
under 18 dB RMSE (16.7 dB when corrected), and the Flat-Edge model (with
10 “buildings” presumed) at 16.5 dB RMSE (15.3 dB when corrected)5.

Figure 3 provides two domain-oriented metrics that describe models’ com-
petitive and individual “goodness”. The competitive metric is the percentage of
links that a given model produces the best prediction for (and hence sums to
100). We can see that no given model dominates the competition—the honor
of best prediction is spread fairly evenly among half a dozen models that each
achieve the best prediction between 10 and 15 percent of the time. The other
metric is an individualistic definition of success—the percentage of links a given
model’s prediction is within the expected spread (measurement standard devi-
ation). The best performing models are “correct” 10% of the time using this
metric. If we lower the bar to making a prediction within two standard devi-
ations of the measured median value, the best performing models (Egli, Friis
(with α = 2), Flat-Edge, ITM, ITU Terrain, and Two-Ray) achieve between 10
and 15% correct.

Figure 4 plots our next metric: ability to order links. In some applications
it may be sufficient for a propagation model to order two or more links by

4 Although we are careful to correct for this measurement variation, it is on the whole
rather small: 1.31 dB median standard deviation and 1.67 dB at the third quantile.

5 Some models perform substantially better when we consider only the fraction of
cases that are in their intended coverage. The ITM, for instance, has a competitive
spread-corrected RMSE of 17.3 dB when only error-free predictions are considered.



Rank Correlation for All Links and All Models
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Fig. 4: Ability to order links, computed using Spearman’s ρ. A value of 0 indicates
a random ordering (relative to the oracle order) and a value of 1 would be a
perfect ordering.

Mean Error/Skewness for Each Model
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Fig. 5: Prediction Error Skewness, computed as the sum of error divided by the
number of total links. Models that make an equal amount of over and under
predictions acheive a value near zero. Models that make a majority of under or
over predictions have a large negative or positive value respectively.

strength. In this scenario, we imagine that the predicted path loss isn’t itself
expected to be absolutely correct, but instead simply a relational performance
compared to other links in the same network. In this figure, we plot Spearman’s
non-parametric rank order coefficient ρ for each model. For this metric, a value of
zero indicates no correlation (random order) and a value of 1.0 or -1.0 indicates
perfect positive or negative correlation. We can see that with few exceptions,
all models score in the neighborhood of 0.25 to 0.30 indicating a small positive
correlation. The best model (hatam.egli) performs around 0.45 and the worst
model (itu.terrain) acheives less than 0.20 correlation.

Our final metric is skewness, which is shown in figure 5. For many applica-
tions an over or under estimate of path loss can come with a high price. This
metric plots the sum of all residual error for each model. A model that makes
an equal amount of over and under estimations should produce a skewness of



0. A model that systematically over-predicts path loss (i.e., under-predicts the
received signal strength at sites) will have a large positive value and a model
that systematically under-predicts path loss will have a large negative value.

We see that even in the mean case, the best models, with their best parameter
settings cannot achieve an error of less than 15 dB—five orders of magnitude
from the correct value! Even our more permissive performance metrics show the
models are unable to widely succeed at seemingly simple tasks of rank-ordering
links, or making predictions within two standard deviations of the measured
value. This raises the question: is there some common source of error that is
affecting all models?

To answer this question, we analyzed the covariance (correlation) between
“best prediction error” (the error of the best prediction from all models) and
various possible factors. We found no significant correlation between carrier fre-
quency (and therefore neither modulation scheme nor protocol) or antenna ge-
ometry. We did however find that link distance is significantly correlated with
error for a large number of models. This makes sense: many models were de-
signed with particular lengths of links in mind and we are using them outside
of their coverage in this study. It also raises the question: can a hybrid model
which uses one of two or more other models at different link lengths produce a
model which is better performing than any single model alone?

To answer this question, we implemented two hybrid models. The first uses
the Hata model (for medium cities) for links under 500m (where it is well
performing) and the Flat-edge model (with 10 “buildings”) for longer links
(hatam.flatedge10). This model performs marginally better than all other mod-
els, producing a corrected RMSE of 14.3 dB. Very slightly better performance
is achieved by combining the Hata model with the Egli Model (14.2 dB RMSE).

It is interesting to note that in our analysis the best performing models would
not typically be chosen for this environment. The two best performing individual
models are Flat-Edge and Alsebrook. The Flat-Edge model attempts to calculate
the path loss after the signal diffracts over some number of interfering “screens”.
Here, we pick 10 as the number of screens and obtain decent results, better in
fact than the models which take the true terrain profile into account when they
make predictions. The Alsebrook model is a simple plane-earth (two-ray) model
with some corrections from measurements and an optional static correction for
terrain “roughness”. In the version that performs best for our measurements,
we arbitrarily set the terrain “roughness” to 200m and the “street width” and
average “building height” to the suggested default values of 5 and 20m. Perhaps
comporting with Occam’s Razor, the simplest models (Friis, Egli, Two-Ray) are
often as well performing and in many cases better performing than the more
complex models with respect to our metrics.

6 Conclusion

Overall our results show that even with the best models, hand-tuned for our
environment, we can expect an RMSE in excess of 12 dB (4 orders of magnitude



from correct and a far cry from the 3 dB repeated-measures variation which
we treat as the gold standard [7])—a result that precludes use in all but the
least demanding applications. More forgiving performance metrics show similarly
bleak results: no model is able to obtain better than 25% of predictions within
two standard deviations of the true value and the best models are typically 20%
wrong when it comes to placing links in an order relative to all other links.
We have also shown that picking a “good looking” model at random from the
literature and applying it to a new (or even seemingly congruent) domain is a
precarious task which can produce substantially wrong predictions. Given this,
we believe attempts to model path loss in even more complex environments, such
as indoors, are premature. Instead, we advocate a renewed focus on rigorous
cross validation using publicly available data sets. We also caution users of these
models to be wary of their predictions and to do in-situ validation whenever
possible. In future work we expect to explore more complex models for path loss
prediction such as those that make use of active correction from measurements
(e.g., [8]).
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