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Abstract. Growth in adoption of distributed wind turbines for energy generation is significantly impacted by
challenges associated with siting and accurate estimation of the wind resource. Small turbines, at hub heights of
40 m or less, are greatly impacted by terrestrial obstacles such as built structures and vegetation that can cause
complex wake effects. While some progress in high-fidelity complex fluid dynamics (CFD) models has increased
the potential accuracy for modelling the impacts of obstacles on turbulent wind flow, these models are too com-
putationally expensive for practical siting and resource assessment applications. To understand the efficacy of
available models in situ, this study evaluates classic and commonly used methods alongside new state-of-the-art
lower-order models derived from CFD simulations and machine learning approaches. This evaluation is con-
ducted using a subset of an extensive original dataset of measurements from more than 300 operational wind
turbines in the northern Netherlands. The results show that data-driven methods (e.g. machine learning and sta-
tistical modelling) are most effective at predicting production at real sites with an average error in annual energy
production of 2.5 %. When sufficient data may not be available de novo to support these data-driven approaches,
models derived from high-fidelity simulations show promise and reliably outperform classic methods. On aver-
age these models have 6.3 %–11.5 % error compared with 26 % for classic methods and 27 % baseline error for
reanalysis data without obstacle correction. While more performant on average, these methods are also sensitive
to the quality of obstacle descriptions and reanalysis inputs.

1 Introduction

Distributed wind (DW) energy constitutes a small but grow-
ing market with a total global installed capacity estimated
at approximately 1.8 GW (Orrell et al., 2021). As compared
with their utility-scale counterparts, small wind turbines pro-
vide significant opportunity to diversify energy production
and address a market niche not otherwise served, since they

are particularly well suited to industrial, agricultural, and
campus-level installations. Despite their significant potential
as a component of a larger distributed energy resource (DER)
portfolio, adoption of small wind is practically hindered by
a number of challenges including project costs, availability
of incentives, and confidence in the underlying technologies.
Confidence, in particular, is strongly impacted by the practi-
cal accuracy in the prediction of energy production at a site
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of development interest (Fields et al., 2016). Yet, accurate en-
ergy production estimates can only be obtained by predicting
the available wind resource. While large-scale wind plants
can afford to perform detailed observation-driven wind re-
source and site assessments, small-scale wind projects typi-
cally rely on less-expensive use models and assessment tools
to survey the energy production potential due to lower finan-
cial scope of anticipated projects. While the dependence on
models is greater, the challenge to model the resource ac-
curately is also significantly higher: small wind turbines are
more greatly impacted by turbulence and wake effects from
surrounding terrestrial obstacles such as buildings, trees, and
vegetation (Drew et al., 2015).

The state of the art in assessment of obstacle influence
on downwind wind fields for small-wind siting and resource
assessment is characterized by the usage of tools that pro-
vide a mixture of analytical modelling and heuristic estima-
tion (Poudel et al., 2019). The effect of isolated obstacles
on the flow field structure has been studied in the past both
experimentally (Schofield and Logan, 1990; Martinuzzi and
Tropea, 1993; Snyder and Lawson, 1994; Hussein and Mar-
tinuzzi, 1996) and numerically (among others Lakehal and
Rodi, 1997; Krajnović et al., 1999; Yakhot et al., 2006a, b).
Velocity data from such studies can be used to approximate
the effect of buildings on wind velocity profiles in the wake
of isolated obstacles. Analytical models from the literature
(Robins and Apsley, 2021; Counihan et al., 1974; Kothari
et al., 1980; Peterka et al., 1985) have also been developed
for the case of isolated cubes with zero wind angle of attack
(conditions where wind approached the building perpendicu-
lar to one of its sides). Additionally, Perera (1981) used data
from wind tunnel experiments and developed a model suit-
able to predict the velocity deficit at the wake of an infinitely
long obstacle when the winds are perpendicular to the length
of the obstacle.

As a potential compromise between high-fidelity solu-
tions that are too computationally intense for non-expert use,
such as large-eddy simulations (LES; Castro et al., 2017;
Bieringer et al., 2021), and fitted models derived from iso-
lated experimental campaigns, lower-fidelity computational
fluid dynamics (CFD) models have been applied to more
complex obstacle geometries to solve flow patterns in ur-
ban areas (Tominaga and Stathopoulos, 2013). Among these
models are Reynolds-averaged Navier–Stokes (RANS; Bruse
and Fleer, 1998; Gowardhan et al., 2011) modelling ap-
proaches, which while computationally faster, do not capture
the physics at all scales relevant for urban flow and turbu-
lence modelling. Although there have been recent demon-
strations (Bierenger et al., 2021) of LES running∼ 100 times
faster when using graphical processing unit (GPU) ap-
proaches than when using the traditional central processing
unit (CPU), the expertise required to set up such models and
relatively long computational run times for even these lower-
fidelity CFD models are not feasible for operational use (Her-
twig et al., 2018; Tominaga, 2016).

This study evaluates practical methods for modelling the
impact of obstacles on siting and resource assessment, select-
ing those models from the literature that are sufficiently per-
formant and usable for this application, specifically (1) the
classic Perera and SHELTER (WaSP) models (Sect. 3.1),
(2) a pair of new models developed for this study using
data from novel CFD simulations (Sect. 3.2), (3) a modified
QUIC-URB model adapted from urban dispersion modelling
in service of this study (Sect. 3.3), and (4) custom fitted ma-
chine learning models using site-specific data, introduced in
this study (Sect. 3.4). To evaluate each modelling approach,
this study leverages comprehensive dataset from the north-
ern Netherlands combining meteorological tower measure-
ments and turbine production data for more than 300 tur-
bines over multiple years covering a large geographic area.
To our knowledge this is the first study of its kind and pro-
vides an original benchmark for understanding the accuracy
of practical resource assessment and siting methods in the
distributed wind context. Acknowledging that obstacle as-
sessment is only one step in the process of siting, an attempt
is also made to understand the scale of errors associated with
other components, including (a) baseline reanalysis estimates
of the mesoscale wind resource, (b) vertical and spatial inter-
polation necessary to map reanalysis data to a specific site
and target turbine height, (c) bias correction of reanalysis
data using regional measurements, and (d) the accuracy and
completeness of obstacle descriptions.

This paper is organized as follows: the next section (Data)
describes and characterizes the measurement and model data
used in this study. Section 3 (Methods) describes the models
evaluated and the experimental design and metrics used for
validation. Section 4 (Results) provides results from the val-
idation exercise, and Sect. 5 (Conclusions) concludes with
discussion of results, limitations inherent to this study, and
areas of potential future work.

2 Data

Table 1 provides a brief summary of the datasets used in this
study, and in the following subsections we will discuss each
in detail.

2.1 Production data from turbines

An extensive dataset of measurements from EAZ Wind, a
turbine installer and operator in the northern Netherlands,
is used to form a basis for evaluating model performance.
Figure 1 shows the locations of these turbines as well as an
example site used in this study. Additionally, data from one
meteorological tower installed for International Electrotech-
nical Commission (IEC) validation is used. For this tower,
wind speed and direction are determined with a calibrated,
tower-mounted anemometer. For each turbine, power pro-
duction data sampled hourly is used to approximate wind
speed using a manufacturer provided power curve. All tur-
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Table 1. Summary of data sources.

Data source Variables Locations Data Temporal Duration
points resolution

EAZ turbine Power (kW) 327 5.12 million Hour 1–4 years (depending
production on turbine installation

date)

EAZ Wind speed (m s)−1, 1 6514 Hour 8 months
meteorological wind direction at (down-
tower 15 m sampled

from
100 ms)

KNW-Atlas Wind speed (m s−1), 2.5 km spatial resolution for study 3.27 million Hour 20 years (1998–2019)
reanalysis dataset wind direction, area

air density

AHN3 lidar AGL 0.5 m Spatial resolution for 62.69 million n/a 2014–2019
digital surface and elevation (m) validation locations
model (DSM) Terrain/height

3DBuildings.com Polygonal Approx. 22 535 n/a Downloaded between
vector building buildings and 53× 49 km area near the city of buildings December 2020 and
data height (m) Groningen, the Netherlands June 2021

n/a: not applicable.

Figure 1. Production data were drawn from more than 300 turbines located in the northern Netherlands. Each turbine has a 15 m hub
height and provides power production data hourly. The area of detail includes the majority of turbines which are the focus of our obstacle
modelling effort. An example site is given in the bottom right of the figure, showing the placement of two specific validation turbines, the
IEC meteorological tower, and wind rose for this location. When the wind direction is north/northwest, these turbines are in the wakes of the
buildings and trees on the site while other wind directions are largely free of obstructions.

bines used in this study are EAZ-Twelve with a standardized
hub height of 15 m.

When converting power to assumed wind speed, it is not
possible to differentiate approximate wind speed for those
times when the power production is zero, when the turbine
may be curtailed by the grid or offline for maintenance. It is
also not possible to differentiate between higher wind speeds
when the turbine is operating at rated power. For the re-
maining cases where the power generation is between 0 and
11 kW, the power curve is invertible, allowing a simple com-

putation of wind speed through interpolation. Those turbines
nearby the meteorological tower show good agreement be-
tween the anemometer measured wind speeds and those in-
ferred from power generation (RMSE: 0.98 m s−1; MAE:
0.63 m s−1; Mean Bias: −0.15 m s−1). Some of the residual
differences between the anemometer and the inferred speeds
from power generation are likely due to different wake im-
pacts as the turbines are closer to and more in line with obsta-
cles relative to the dominant wind flow directions compared
with the tower.
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Figure 2. Panels (a) and (b) show the approximate accuracy of the KNW-Atlas reanalysis data in the study region. Panel (a) compares reanal-
ysis data at 10 m (no vertical interpolation) with those data collected from the IEC meteorological tower. A small negative bias (−0.12 m s−1)
is observed with an R2 of 0.75. Panel (b) compares the KNW reanalysis data product to data from the Amsterdam Schiphol Airport in 2018
using the nearest KNW site (14 km distant).

2.2 Reanalysis mesoscale atmospheric data

Mesoscale reanalysis data from the KNW-Atlas dataset is
used as inflow to the models studied. This dataset utilizes the
ERA5-Interim as its underlying model (Wijnant et al., 2015).
Associated validation studies found that KNW-Atlas over-
estimates the 10 m winds by 0.3–0.4 m s−1 using satellite-
derived offshore winds for most of the North Sea and under-
estimates the 10 m winds by 0.1–0.3 m s−1 near the Dutch
coastline (Stepek et al., 2015). In this dataset, observations
from one onshore met tower were used to correct the en-
tire product. Due to the limited prior assessment of onshore
accuracy, an independent assessment was performed for the
present study. Figure 2 shows the results of this validation,
demonstrating agreement with IEC met tower and nearby air-
port measurements, further confirming the limited prior vali-
dation results from Stepek et al. (2015).

In order to map the KNW-Atlas data to the location of each
turbine for the purpose of validation, best practices for ver-
tical and spatial interpolation at 40 m hub heights were uti-
lized from prior work by this team (Duplyakin et al., 2021).
Specifically, a comparison was made between the inverse dis-
tance weighting (with 16 interpolation points) strategy for
spatial interpolation and the linear interpolation strategy for
vertical interpolation. According to recent work, this combi-
nation produced wind estimates with the lowest validation
errors, characterized by the mean absolute error estimates
obtained for 63 validation sites in the USA (154 site-height
combinations). Despite their relative efficacy in the USA, a
simpler method utilizing nearest-neighbour spatial interpo-
lation and a log law spatial interpolation was slightly better
performing in the area of study; hence, that approach is used
here.

An evaluation was performed between two techniques for
additional region-level bias correction (BC) of the reanaly-

sis data. BC technique 1 (BC1; turbine data) utilizes wind
speed data from each turbine, converted from power as dis-
cussed above to fit a multiple linear regression utilizing hour
of the day, month of the year, wind direction, and reanaly-
sis wind speed as predictor variables. To prevent underfitting
due to the dearth of higher wind speeds in this dataset, a con-
stant 13 m s−1 is imputed when the turbine is operating at
rated power. BC technique 2 (BC2; met data) utilizes data
from the meteorological tower. While these data are more
limited in spatial scope, they are higher resolution, providing
greater accuracy. The addition of bias correction resulted in
a reanalysis data product closer to observations; however, as
both methods necessarily include some effects from obsta-
cles, there may be double counting of obstacle impacts when
combined with a separate obstacle model.

2.3 Obstacle data

To support obstacle assessment, a standardized method for
mapping obstacles was developed. The process begins with
information from 3DBuildings (2021), which provides a
high-resolution building dataset at the inexpensive average
rate of approximately USD 0.06 km−2 and/or USD 0.07 per
building for the selected area in northern Netherlands. Simi-
lar data can be obtained for other areas in the world; however,
the rates are likely to be different as they are directly tied to
the level of urbanization in each area of interest. Figure 3a
provides an example of the annotations available commer-
cially, which correctly identifies building obstacles. In cases
where the commercially available data may be incomplete,
and to account for vegetation, which is not included in the
commercially available data, a new semi-automated process
has been developed using publicly available lidar data from
the AHN3 lidar digital surface model (DSM). To simplify
annotation, the DSM layer for the 1× 1 km square encom-
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Figure 3. Top panel: obstacle annotations for a site with two turbines using data commercially available from 3dBuildings.com. Bottom
panel: full annotations using a semi-automated annotation process including both buildings and vegetation, enriched with lidar data.

passing a given turbine is extracted. The DBSCAN cluster-
ing technique is used with a convex hull mapping algorithm
to determine preliminary obstacle polygons (Schubert et al.,
2017). The next step is to manually correct the obstacles and
use a visible satellite layer in the QGIS software to modify
the polygons around buildings and trees separately. Once the
polygons are extracted, it is possible to compute the heights
of the obstacles by masking the underlying DSM data with
the annotated obstacles and calculate the mean height for
each. Figure 3b shows data for the same site with these addi-
tions and corrections.

At the end of this process, each building or vegetation
obstacle becomes an entry in a geospatial data frame with
height estimates accompanying the two- dimensional poly-
gons that represent obstacle shapes. Layers of this data frame
can be selected for analysis and visualization of buildings
only, vegetation only, or the combination of the two obsta-
cle types. Across the full set of validation sites, filtering out
null height obstacles, and considering obstacles with heights
greater than 1 m, 257 buildings and 1353 trees/vegetation
polygons were located. Building heights range from 1 to
12 m while vegetation heights range from 1 to 15 m.

3 Methods

Table 2 provides a high-level description of the models stud-
ied here, each of which is discussed in the following subsec-
tions.

3.1 Classic models

The Perera model was developed in 1981 using wind tun-
nel measurements (Perera, 1981). It provides a closed form
equation for the velocity deficit behind a thin (in streamwise

direction), infinite-length obstacle of arbitrary porosity, sim-
ilar to a fence or hedgerow. This model was designed for
a scenario where the wind was perpendicular to the length
of the obstacle. Despite its apparent limited applicability
to other situations, it has found broad applications in com-
mercial tools and remains well known in the small wind
community (Poudel et al., 2019). Besides the classic Per-
era model, various extensions exist including the SHELTER
model proposed as part of the WaSP toolkit (Astroup and
Larsen, 1999), which allows for limiting the obstacle length
to better model buildings and other finite-length shapes. For
this study, implementation of these models following the de-
scriptions in the literature was performed. The finite-length
version of Perera is referred to here as Perera+.

One significant limitation of both models in their usage
for wind turbine siting is that they do not provide reasonable
values for obstacles nearer than 5 ·h (or 7 ·h per the original
Perera paper), where h is the obstacle height. Figure 4 shows
this visually by plotting the velocity deficit factor for differ-
ent obstacle heights and measurement distances. The trian-
gular region at left of this figure is the area for which Perera
should conservatively abstain from making an estimate (lo-
cations closer than 5 ·h). Since these nearby locations may
incur the largest impact in terms of wake and turbulence on
neighbouring turbines, there is significant concern that for
DW siting and resource assessment applications the Perera
method may underestimate obstacle impacts. Nevertheless,
due to their popularity, these models are included as a base-
line upon which to compare subsequent models.

3.2 ANL and ANL–ML models

Several low-order models (LOM) that are designed to update
the Perera model were developed to support this study. An
extensive dataset from RANS simulations for the prediction
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Table 2. Summary of models evaluated.

Model name Description Computational Required input data Limitations
(section) cost

Perera/Perera Previously published and Executes quickly Obstacle descriptions Model assumes obstacles are
+ (3.1) widely adopted algebraic (seconds) (OD); reanalysis shaped like fences (i.e. have

models fitted to wind wind speed/direction negligible depth) and cannot
tunnel observations (RWD) model obstacles that are nearest

the turbine

ANL (3.2) Algebraic model derived Executes quickly OD; RWD New model with limited
from high-fidelity (seconds) validation; multi-obstacle
simulations support is limited

ANL–ML (3.2) Machine learning model Executes quickly OD; RWD New model with limited
derived from high-fidelity (seconds) validation; multi-obstacle
simulations. support is limited

LANL/QUIC Simplified flow model Somewhat costly OD; RWD Too costly to run for every time
(3.3) derived from fitted (minutes to hours point, runs on statistical

empirical data and per site) summaries (hour/month/sector)
included with a graphical
user interface

Data driven Machine learning model Slow to train OD; RWD; prior Requires data from
(wind) (3.4) derived from production (hours), but fast to production data (PPD); neighbouring turbines or those

turbine data from the execute (seconds) turbine power curve in a similar terrain or region
same region (TPC)

Data driven Machine learning model Slow to train OD; RWD; PPD Similar to above, predicting
(power) (3.4) derived from production (hours), but fast to power instead of wind speed,

turbine data from the execute (seconds) hence cannot be used for
same region different turbine models

Data driven Multiple linear regression Fast to train RWD; PPD; TPC Does not utilize obstacle data
(bias only) model derived from (seconds) and fast and cannot model non-linear
(3.4) production turbine data to execute relationships

from the same region. (seconds)

Reanalysis Precomputed mesoscale Download and/or Location Does not consider microscale
only wind speed and direction, database lookup (latitude/longitude); phenomena; lightly validated

publicly available height

Figure 4. Velocity deficit factor prescribed by the Perera model for different combinations of obstacle heights and distances downwind. The
missing data in the triangular section at left are those points within 5 h where the model cannot make an accurate estimate.
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Figure 5. Schematic describing ANL and ANL–ML models.

of the flow structure at the wake of buildings (Fytanidis et
al., 2021a) were used to train the physics-informed, analyti-
cal data-driven model and the solely machine learning based
model, referred to herein as ANL and ANL–ML respec-
tively. Specifically, the high-order spectral-element based
solver NEK5000 (Fischer et al., 2008) was used to solve
three-dimensional turbulent flow equations assuming incom-
pressible flow using realistic boundary conditions to mimic
characteristics of real turbulent atmospheric boundary layer
flows. The k–τ turbulence closure (Speziale et al., 1992) in
combination with the Boussinesq approximation were used
for the estimation of Reynolds stresses. The accuracy of the
numerical results was evaluated against wind tunnel observa-
tions and against results from another numerical model (Fy-
tanidis et al., 2021a, b, using data from Snyder and Lawson,
1994). A grid convergence study was carried out by increas-
ing the polynomial order of the applied computational grids
which demonstrated that the produced results are grid inde-
pendent (Fytanidis et al., 2021a). Additionally, the results of
the applied k–τ closure were compared against results pro-
duced using the standard k–ε closure and the finite volume
solver OpenFOAM. This comparison showed good compari-
son between the results from the two methods and wind tun-

nel observations. Finally, no significant difference was ob-
served between the NEK5000 and OpenFOAM results (Fy-
tanidis et al., 2021a, b).

The validated NEK5000 computational results were then
used as a training dataset for the evaluation of parameters
in a physics-informed, data-driven model (Fytanidis et al.,
2021b) that takes into consideration different angles of at-
tack and the effect of different building aspect ratios for the
prediction of wake characteristics. Specifically, the dimen-
sions of the enclosing cuboid (Fig. 5a) aligned with the direc-
tion of the incoming velocity were used as input parameters
for the training of the coefficient for the physics-informed
ANL model. The developed model is a new, generalized ver-
sion able to predict the wake characteristics under various
angles of attack and building aspect ratios. Additionally, a
correction factor for the prediction of the acceleration due
to the formation of a horseshoe vortex around the build-
ing was developed (Fytanidis et al., 2021b). The low-order
model parameters for various angles of attack and building
aspect ratios were estimated using the surrogate model tech-
nique combined with the machine learning based algorithms
included in the open-source package Tensorflow (Abadi et
al., 2015). The applied neural network architecture consists
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Figure 6. The regions where the two wake algorithms, diffusive wake and recirculating cavity, are applied downwind of the building in the
QUIC model.

of four branches for the main wake model component of
the LOM and three branches for the horseshoe correction of
the LOM.

The developed model uses a local coordinate system for
each obstacle and evaluates the location of the turbine with
respect to the centre of the enclosing cuboid (Fig. 5b). When
the turbine is located in the wake of an obstacle, the low-
order model evaluates the velocity deficit f . If the turbine
is located upwind of the building, the velocity deficit equals
zero (f = 0). Finally, the solutions for each obstacle were
superimposed (Fig. 5c) using a linear and a non-linear su-
perposition technique (see more details in Lissaman, 1979;
Katic et al., 1986; and Vogel and Willden, 2020).

3.3 LANL/QUIC model

Models developed for decision support related to trans-
port and dispersion of pollution, chemical–biological–
radiological agents, and smoke in population centres cannot
be served by CFD approaches due to their computational
requirements. Thus, fast-response models have existed for
three decades (Röckle, 1990) to serve these specialized ap-
plications. These tools fill an important gap in dispersion
modelling between extremely rapid but overly simplified flat-
earth analytical models typically employed by the emergency
response community and the high-fidelity but computation-
ally expensive CFD codes. One of these tools is the Quick
Urban & Industrial Complex (QUIC) dispersion modelling
system, which was designed to compute wind fields in dense
built-up urban areas using the diagnostic wind solver QUIC-
URB (Brown et al., 2013). For dispersion modelling, these
wind fields are then used by the Lagrangian random-walk
model QUIC–PLUME to predict transport and dispersion of
gas and particle releases in urban areas. Similarly, QUIC–
URB or like-minded models (Kaplan and Dinar, 1996; Wang
et al., 2005) can provide wind fields for DW applications
where small-scale wind energy developers do not have the
time, resources, or expertise to employ higher-fidelity CFD
modelling tools. QUIC can run on a laptop with one simula-
tion requiring only seconds to minutes and has been demon-
strated to predict wind fields (Neophytou et al., 2011) and
plume dispersion footprints (Hertwig et al., 2018) that were

comparable to CFD modelling results for practical applica-
tions, especially considering the much shorter run times.

The QUIC system’s empirical diagnostic wind solver,
QUIC-URB, is based on the concept developed by
Röckle (1990). The 3D mean wind field is initialized using
one or more vertical profiles of wind speed and direction that
can either be directly measured or are an extrapolation from
a single measurement point. The ambient or background ve-
locities are determined in horizontal planes between all of the
profile locations using a two-dimensional Barnes-mapping
interpolation scheme. The QUIC-URB model then uses em-
pirical parameterizations to modify the initial wind field to
account for building effects (Brown et al., 2013) and vegeta-
tive canopy drag (Nelson et al., 2009). The original building
wake algorithm as detailed in Röckle (1990) and Kaplan and
Dinar (1996) divides the wake downwind of a building into
two regions: (a) the recirculating cavity where the flow di-
rection is reversed from the ambient flow and (b) the wake
region that transitions the flow back to the undisturbed am-
bient conditions. The original wake region is defined by a
quarter ellipsoid that extends directly downwind of the pro-
jected cross section of the building in the direction of the
wind without extending laterally to the sides of the building
or vertically above the building, similarly to the recirculating
cavity seen in Fig. 6 (“Original Wake”). The lack of turbulent
diffusion results in a model that cannot accurately predict the
reduced velocity above the buildings which can still signif-
icantly affect the power produced by a wind turbine that is
located downwind of buildings.

To support distributed wind applications, a new diffusive-
wake model for QUIC was developed that extends both lat-
erally from the sides and vertically above the top of the
building (see Fig. 6 “Diffusive Wake”), using machine learn-
ing techniques on time-averaged high-fidelity LES. A set of
equations and their parameters describing the stream-wise
and crosswind components were developed based on com-
parisons to wind-tunnel data, high-fidelity models, and gen-
eral understanding of flow characteristics. Parameters for
these functions were determined to be themselves functions
of meteorological and building geometry related variables
such as atmospheric stability, building dimensions, down-
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wind distance, and relative wind angle. The model was
trained against time-averaged data from 72 LES simula-
tions provided by Aeris using Joint Outdoor Urban-indoor
LES (JOULES) model (Bieringer et al., 2021) depicting dif-
ferent building dimensions, atmospheric stabilities, and wind
angles. Several methods of machine learning were used with
the data such as data smoothing, non-linear fitting, and ge-
netic programming to calculate parameters for the govern-
ing equations. These methods were derived from a suite of
Python packages including PyVista (The PyVista Develop-
ers, 2021), SciPy Optimize (The SciPy community, 2021),
Statsmodels (Perktold et al., 2021), and GPlearn (Stephens,
2021). Using SciPy’s Optimize curve fitting function, param-
eter values were calculated as a function of downwind dis-
tance for each of the 72 cases. GPlearn’s symbolic regres-
sion algorithms were then used on each of the parameters
of these 72 cases to generate equations that are functions
of atmospheric stability, building dimensions, downwind dis-
tance, and wind angle. With these equations and parameters,
the new diffusive wake model was implemented as an op-
tional capability in QUIC–URB. The updated QUIC diffu-
sive model could then be run on a subset of EAZ turbines
by creating domains using the QUIC Graphical User Inter-
face (QUIC–GUI) and GeoJSON files containing the build-
ing data. Note that all of the building object shapes when
resolved in QUIC are converted automatically to rectangu-
lar shapes since current functionality of the diffusive wake
model is limited to rectangular shapes as shown in Fig. 6.

3.4 Data-driven methods

The aforementioned models are able to make predictions of
velocity deficits given only the inflow wind speed, direction,
and a description of obstacles. However, when prior data
are available, as it is for this study area, there is an addi-
tional opportunity to take a data-driven approach, replacing
or augmenting simulation-derived and wind-tunnel empirical
models like those discussed above with statistical or machine
learning models fitted to data from the specific site of inter-
est. It is this observation that motivates the development and
validation of an entirely data-driven approach to resource es-
timation. To this end, observed production data from 307 tur-
bines were utilized to train predictive models that are evalu-
ated on the 20 remaining turbines.

Featurization of the obstacles is the first concern in aug-
menting the available measurement data so that models can
“learn” the impact of obstacles on power generation or wind
speed. To strike a balance between computational complex-
ity and detail, the featurization method shown in Fig. 7 was
developed. For each turbine, and each of 36 points along the
azimuth, all buildings that fall along a 1 km ray are used.
For the buildings or obstacles along this path, the number of
obstacles (n), the maximum height among obstacles (maxh),
the distance to the nearest obstacle (mind), the total cross-
sectional distance where there are obstacles (toti), and the

Figure 7. An example of featurization in which only one building
intersects the 1 km ray at the present angle, so n= 1 and maxhd =
mind, while maxh = 5 (the height of the intersecting building),
mind is the distance to the leeward face, and toti is the total length
of the intersection in metres.

distance to the maximum height obstacle (maxhd) are used.
Future work may consider deep neural network architectures
such as convolutional neural networks (CNNs) that do not
require explicit featurization.

To choose an effective modelling approach, three dif-
ferent models are evaluated using these same features:
(1) multiple linear regression (MLR) fitted by ordinary
least squares (OLS), (2) random forest (RF) ensemble, and
(3) support vector regression (SVR) with a polynomial ker-
nel. These models were chosen because they are well known
and widely available while providing a range of complexity
and modelling approaches. Fitting and hyperparameter tun-
ing is performed with the R statistical computing environ-
ment (R Core Team, 2021) and caret package (Kuhn, 2021).
SVR may be an appropriate technique for modelling non-
linear relationships given its polynomial kernel, RF may be
most suitable for threshold-based modelling given its under-
lying tree-based construction, and MLR is useful for pro-
viding baseline and easily interpretable results. All models
were fitted with and without obstacle features to establish
a baseline performance and to predict power generation (di-
rectly) and wind speed (indirectly). Due to the computational
complexity of fitting the entire dataset and risk in overfit-
ting, 20 000 randomly selected data points are used to fit and
tune models, stratified by turbine location and wind direc-
tion sector. Experiments using a larger random sample (e.g.
50 000 points) show a small improvement in model perfor-
mance (∼ 1 %). Fitted performance and variable importance
for the three models are provided in Table 3. The RF ap-
proach is able to model the training data most harmoniously,
while the MLR approach performs admirably given its sim-
plicity. In practice the improvement associated with adding
obstacle features is very small (1 %).
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Table 3. Variable importance and performance metrics for fitted models. Results for wind speed (m s−1) are given. Results from models
predicting power generation are similar. Bold values show the best performing result.

Bias correction Bias correction Variable importance for bias correction and
(RMSE; MAE; R2) and obstacle features obstacle model

(RMSE; MAE; R2)

MLR 1.04; 0.81; 0.53 1.04; 0.81; 0.54 Reanalysis wind speed, hour, month, maxh, mind
(other variables not significant)

RF 0.96; 0.74; 0.58 0.95; 0.74; 0.59 Reanalysis wind speed, hour, sector (wind direction),
month, toti, maxhd, mind, maxh

SVR 0.98; 0.75; 0.54 0.98; 0.75; 0.54 Reanalysis wind speed, sector (wind direction), hour,
month, maxh, mind, maxhd, toti

Figure 8. Example validation sites (228 and 88) showing a typical turbine location as well as the location of obstacles relative to the turbine.

3.5 Experimental design

To evaluate the models described in the three previous sub-
sections, 20 turbines are held out as a validation set as well as
the data from the IEC met tower. The validation set of 20 tur-
bines were chosen from the larger set of 327 because they
have significant obstacles in some inflow directions while
also representing the geographic diversity and siting com-
plexity in the dataset. Due to the manual nature of some as-
pects of modelling (in particular, for the QUIC model), and
practical feasibility of ensuring accuracy of obstacle descrip-
tions, it was not practical to calculate results for all sites.
Hence, it is assumed that this subset of 20 is representative of
the larger set. Figure 8 shows two example sites and provides
a visual representation of the selection criteria.

Standard error metrics including root mean square er-
ror (RMSE), mean absolute error (MAE) and mean bias, for
each model and each site are calculated. RMSE is defined as
the square root of the mean of the squared differences be-
tween observed and predicted wind speeds. MAE is defined
as the mean of the absolute value of differences between ob-
served and predicted wind speeds. Mean bias is defined as

the mean of these same differences and hence is negative in
the case of a systematically negative bias (i.e. underpredic-
tion). Besides these metrics, an application-specific measure
of error is also calculated: relative error in annual energy pro-
duction. This metric is computed as follows:

1. Hour–month–sector (HMS) matrix: calculate the aver-
age wind speed for each combination of 10◦ wind di-
rection, hour, and month using model predictions.

2. Annualized energy production (AEP): calculate the an-
nual production estimate (MWh) for this site using his-
torical reanalysis data and the HMS matrix as a lookup
table.

3. Relative error in AEP estimate: compute the percentage
difference between the AEP estimate and the true pro-
duction of the turbine during the period of study.

To understand the practical performance of models rela-
tive to the conditions in which they are applied, each model
is evaluated with basic obstacle descriptions and unaltered
inflow data as well as two other scenarios: (1) with prior bias
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Figure 9. Average error in m s−1 for IEC site grouped by wind speed direction (10◦ sectors) for (a) LANL/QUIC, (b) KNW-Atlas reanalysis,
and (c) ANL non-linear. Positive errors (lighter colours) suggest an overestimate of the wind resource relative to observed data, whereas
negative errors (darker colours) indicate the opposite. The scale of errors for each plot is given on the radial access.

correction applied to the inflow and (2) with enhanced obsta-
cle data including vegetation.

4 Results

The results are subdivided below into those that utilize the
8 months of meteorological tower data and those that uti-
lize the validation set of 20 turbines. Due to the inherent
strengths and limitations of each performance assessment,
these should be taken together to draw a conclusion about
practical performance.

4.1 Results for IEC tower

Combined results are provided for the IEC tower site (pic-
tured in Fig. 1) in Table 4. While this is only one site, the data
are of high quality for the 8-month study period. The KNW-
Atlas reanalysis data product significantly overestimates the
wind speed at this site, resulting in an approximately 13 %
overestimation in annual production that might be achieved
(mean bias 0.25 m s−1). It is assumed that this overestimate
is due to the need for obstacle velocity deficit correction. In-
deed, when applied, each obstacle correction model reduces
the degree of overestimation. However, some models cause
too great of an adjustment and skew the results towards the
negative. The best-performing model overall is the LAN-
L/QUIC model, achieving< 1 % relative error (positive bias)
in production across the 8 months, followed by Perera (6.4 %
relative error, positive bias). The best-performing model with
a negative bias is the data-fitted bias correction model (no
obstacles considered) resulting in an average relative error
of −8.8 %. The data-fitted models are likely less performant
here because they were fitted with turbine data from other
EAZ turbines, and hence are optimized to predict turbine per-
formance rather than anemometer measurements.

Figure 9 compares the error process for both the inflow re-
analysis data and the QUIC/LANL and ANL methods using

a polar plot. As this site has the bulk of obstacles located to
the NNW, it is reasonable to expect the error in this direc-
tion, whereas the other dominant modalities in wind direc-
tion (W and SE) appear unobstructed. The plots show that
the QUIC/LANL model makes only modest adjustments to
the positive bias in the NNW direction and most significantly
addresses overestimates in less-dominant wind flow direc-
tions (N and NW). By comparison, the ANL model does bet-
ter to address the overestimate of wind speeds in the direc-
tion of obstacles (NNW) but also exaggerates these effects in
some directions (W and NNE). These results suggest there
is significant sensitivity in the choice of obstacle model: in
some cases the choice may cause more harm than good in
environments where the underlying reanalysis data have rel-
atively low bias, the terrain is simple, and turbines can be
located to minimize interference from obstacles in the domi-
nant direction of wind flow.

4.2 Results for turbine validation set

In the next phase of analysis, similar metrics are calculated
for the larger dataset of 20 selected validation turbine loca-
tions. Table 5 and Fig. 10 provide the combined results. The
most performant models across a variety of sites are the data-
driven models. This stands to reason since these models were
able to benefit from the rich multiyear dataset of production
from turbines in this same environment. Interestingly, the ad-
dition of obstacle features adds only a very small (∼ 1 %) im-
provement to the overall accuracy of this data-driven method,
suggesting that local bias correction without obstacle mod-
els may be sufficient in regions with similar topography and
well-sited turbines with few large obstacles. Among those
models that operate without a priori information, the LAN-
L/QUIC and ANL non-linear models both perform well with
an 8 % and 12 % average error respectively, though the LAN-
L/QUIC model has a smaller spread in its error distribution.
The Perera model makes very conservative adjustments to
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Table 4. Results comparison for IEC Met Tower. Bold values show the results of best performance.

Model Bias RMSE MAE AEP
(HMS (HMS (HMS relative

average/ average/ average/ error
point point point (%)

average) average) average)
(m s−1)

Reanalysis only 0.25/0.27 1.20/1.28 0.88/0.95 13.09
ANL (non-linear) −0.30/− 0.28 1.09/1.15 0.80/0.86 −10.53
LANL/QUIC 0.07/– 1.59/– 1.21/– 0.95
ANL/ML (non-linear) −0.82/− 0.79 1.54/1.56 1.12/1.14 −26.42
Data driven (RF/wind) −0.08/− 0.10 1.05/1.13 0.82/0.88 −10.40
Data driven (RF/power) n/a n/a n/a −9.99
Data driven (bias only) −0.11/− 0.11 1.06/1.04 0.82/0.88 −8.81
Perera 0.08/0.09 1.28/1.37 0.95/1.02 6.36
Perera+ 0.23/0.25 1.20/1.28 0.88/0.95 12.38

n/a: not applicable.

Figure 10. Box and whisker plots showing performance (median, IQR, 90th percentiles, and outliers) for the models studied for annual
production estimate relative error (a) and mean pointwise wind speed bias (b).
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the inflow reanalysis data. These results again suggest a high
degree of sensitivity in model selection with some models
overestimating or underestimating the annual production by
as much as 40 % or 60 % for individual turbines. When exist-
ing production data are available, the best approach for these
sites appears to be one driven by prior measurements, achiev-
ing 3 %–5 % less mean error.

4.3 Bias correction before obstacle correction

Being that the data-driven methods perform very well in our
analysis, and even without obstacle features, one potential
approach would be to combine a data-fitted regional/site level
bias correction with a subsequent obstacle model (i.e. Perera,
LANL QUIC, or ANL LOM). In this scenario, the obstacle
models would begin with velocity estimates that are closer
to observation, perhaps reducing their error but also with the
risk of double-counting the effect of obstacles. To understand
the practical efficacy of this hybrid approach, the perfor-
mance of each model is assessed with and without prior bias
correction. Figure 11 shows the result of this experiment. For
all models, the addition of prior bias correction significantly
reduces the wind speed estimates, causing a negative mean
bias and thereby underestimating the performance of the tur-
bines in most cases. The Perera model does perform better
with bias correction; however, this is likely due to the degree
to which the Perera model overestimates the wind velocity
rather than as a result of a uniquely positive interaction be-
tween these two models. On the right-hand side of this plot,
we can see the performance for bias correction alone, with-
out obstacle assessment, which tends to perform better (error
much closer to zero) than all models except Perera as noted
above. Based on these results, the derived recommendation is
that either local (data-fitted) bias correction be applied when
data are available or obstacle correction, when data are not
available, but not both. All models still outperform reanaly-
sis data alone.

4.4 Quality of obstacle data

As a final consideration in the configuration, all models were
run for all selected sites using both the building-only obstacle
data available commercially from 3DBuildings.com and with
those using our semi-automated annotation method, utilizing
lidar data and manual inspection to add additional buildings
and vegetation. Notably not all models are designed to model
vegetation, so for those models that do not explicitly include
it (ANL LOM and Perera), vegetation is treated as if it is a
collection of solid obstacles of the same rectilinear sizes and
shapes.

Figure 12 shows the result of this experiment. In nearly all
cases, adding additional obstacles (whether additional build-
ings or vegetation) results in generally lower wind speed pre-
dictions at the turbine locations. The ANL models overes-
timate the effect of obstacles in this case, causing an over-

all negative bias for most sites and thereby underestimating
the performance of the turbine. This is a net improvement as
the mean error for the simple obstacles is 6 % and the per-
formance with added obstacles is −6 %. Generally, a small
negative error is likely preferable to a positive error for the
purpose of performance estimation in siting. Overall, the er-
ror spread stays high for this model, however, and at some
sites the error is greater than 20 %. The diffusive wake LANL
model achieves similar performance with the added obsta-
cles (8 %–8.5 % mean error), likely due to a more sophisti-
cated multi-obstacle method and functions designed for the
inclusion of vegetation. The Perera model performs some-
what better with more obstacles but still overestimates wind
speeds. The data-fitted NREL model performs similarly, hav-
ing nearly identical mean error characteristics (2.5 %–2.8 %)
and spread.

These results show the sensitivity of the models studied to
the quality of obstacle input data. While generally the results
are similar with higher-fidelity obstacle data, there are also
cases where the added obstacles (or vegetation) may cause a
model to underestimate wind speeds significantly (i.e. over-
estimate the impact of obstacles). The best-performing mod-
els also perform slightly worse in the mean (and slightly bet-
ter in the median). When it is possible to collect observational
data prior to deploying turbines, or when data from previ-
ously deployed turbines are available, it is likely advisable
to conduct a data-informed model selection and calibration,
thereby determining the best model for a given region and the
necessary detail in obstacle data to maximize practical per-
formance. Also, in areas with significant vegetation, it may
be most appropriate to consider whether modelling vegeta-
tion is necessary.

5 Conclusions

This study provides a first of its kind analysis comparing a
wide variety of obstacle modelling approaches in the practi-
cal setting of distributed wind resource assessment and small
wind turbine siting. Mesoscale reanalysis datasets may not
adequately consider local topography and obstacles resulting
in a significant overestimate in wind speed and performance
at typical sites. When possible, data-driven methods fitted
to production actuals or measurements from mast-mounted
anemometers provide the best opportunity to bias correct the
wind resource from mesoscale models, providing the greatest
relative benefit. In the absence of site-specific measurements,
lower-order obstacle models improve estimates at some sites
(by as much as 10 %–15 % in annual production estimates),
but the resulting accuracy may be sensitively dependent on
the choice of model, the quality of the inflow data, and the
fidelity of obstacle descriptions. Classic models such as Per-
era underestimate the impact of obstacles, while in certain
circumstances the newer models may overestimate the im-
pact of obstacles, resulting in negative bias. This tendency
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Table 5. Results comparison for validation sites (averages). Bold values show the best performing result for each metric.

Model Mean Mean Mean Mean AEP Max/min
bias RMSE MAE relative AEP

(m s−1) (m s−1) (m s−1) error relative
(%) error

(%)

Reanalysis only (15 m) 0.44 1.48 1.04 26.89 70.02/− 1.66

ANL (non-linear) –0.13 1.63 1.18 6.33 55.38/− 37.92

LANL/QUIC – – – 7.96 34.05/− 16.97

ANL/ML (non-linear) −0.76 2.00 1.52 −11.52 43.90/− 49.39

Data driven (RF/wind) 0.17 1.08 0.81 4.70 36.60/− 14.95

Data driven (RF/power) – – – 2.48 32.11/− 13.31

Data driven (MLR/wind) 0.14 1.15 0.85 5.12 40.99/− 25.51
(without obstacles)

Perera 1.25 3.12 1.87 25.66 91.25/4.32

Perera+ 1.38 3.18 1.88 31.60 99.31/9.19

Figure 11. Box and whisker plots showing performance (median, IQR, 90th percentiles, and outliers) for the models studied, both with and
without local bias correction applied prior to obstacle impact assessment. The six boxes on the left of the plot correspond to the models with
and without bias correction, while the three on the right are the inflow data and bias corrected data without obstacle assessment.

is compounded when combining multiple models (e.g. bias
correction and obstacle models) or using higher-fidelity ob-
stacle metadata that includes vegetation. The LANL/QUIC
model performs best among the lower-order models studied;
however, its computational cost is slightly higher than that of
the other models studied and controls on export may hinder
broad international adoption.

This study does have several limitations that must be rec-
ognized in interpreting the findings:

– The northern Netherlands is an agricultural region, at
sea level, with relatively undisturbed inflow wind and
very low terrain complexity. To the extent possible, tur-

bine locations have also been chosen to minimize im-
pact from obstacles. Hence, our results are likely limited
to those in similar environments and should not be ap-
plied in widely different settings. Future work will con-
tinue these studies in additional settings such as moder-
ately built environments in the central USA, as well as
environments with more terrain complexity such as the
mountainous western regions of the USA.

– Though anemometer measurements are utilized for the
IEC site, the bulk of the dataset is derived from turbine
production data which has inherent limits in both accu-
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Figure 12. Box and whisker plots showing performance (median, IQR, 90th percentiles, and outliers) for the models studied, both with and
without additional obstacles. The eight boxes on the left of the plot correspond to the models with and without additional obstacles, while
the one on the right shows inflow without obstacle assessment.

racy and the ability to infer wind speed ex post facto.
Measurements from production wind turbines necessar-
ily limit the impact of obstacles because siting deci-
sions have been made to avoid them. Notably, however,
broad agreement exists in the conclusions from both
anemometer and production-inferred datasets. Never-
theless, these results should be reconfirmed when ad-
ditional meteorological data are available.

– A range of models have been studied, from those just
introduced to those introduced more than 30 years ago.
The most recent models are still being actively devel-
oped and improved, and it is entirely possible that future
versions may perform better or differently.

In summary, based on the conclusions of this study, small
wind operators should take care when accounting for obsta-
cles, and whenever possible the greatest benefit is likely to be
realized through measurement campaigns and careful use of
existing mesoscale data products, ideally coupled with bias
correction. Small wind operators may wish to consult mul-
tiple data products and techniques in their analysis in or-
der to determine a range of possible results instead of just
one. When a priori obstacle impacts are needed, without
pre-existing data, modern lower-order models are likely to
reduce error as compared with classic models such as Per-
era. As compared with data-fitted models, analytical models
may find additional value in micro-siting applications where
the exact velocity deficit due to obstacles is not needed, but
rather the shape and extent of their impacts. Future work will
extend and improve upon these results by considering addi-
tional environments and applications.
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rently being prepared for release through our project website
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