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Abstract. Due to financial and temporal limitations, the small wind community relies upon simplified wind
speed models and energy production simulation tools to assess site suitability and produce energy generation
expectations. While efficient and user-friendly, these models and tools are subject to errors that have been insuf-
ficiently quantified at small wind turbine heights. This study leverages observations from meteorological towers
and sodars across the United States to validate wind speed estimates from the Wind Integration National Dataset
(WIND) Toolkit, the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5),
and the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), revealing
average biases within ±0.5 ms−1 at small wind hub heights. Observations from small wind turbines across the
United States provide references for validating energy production estimates from the System Advisor Model
(SAM), Wind Report, MyWindTurbine.com, and Global Wind Atlas 3 (GWA3), which are seen to overestimate
actual annual capacity factors by 2.5, 4.2, 11.5, and 7.3 percentage points, respectively. In addition to quanti-
fying the error metrics, this paper identifies sources of model and tool discrepancies, noting that interannual
fluctuation in the wind resource, wind speed class, and loss assumptions produces more variability in estimates
than different horizontal and vertical interpolation techniques. The results of this study provide small wind in-
stallers and owners with information about these challenges to consider when making performance estimates
and thus possible adjustments accordingly. Looking to the future, recognizing these error metrics and sources of
discrepancies provides model and tool researchers and developers with opportunities for product improvement
that could positively impact small wind customer confidence and the ability to finance small wind projects.
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1 Introduction

The total global installed capacity of small wind turbines
is estimated at approximately 1.8 GW (Orrell et al., 2021).
In the United States, small wind turbines (i.e., wind tur-
bines with rated capacities of 100 kW or less) comprise a na-
tional installed capacity of more than 150 MW and are poised
for continuing contribution to the role distributed energy re-
sources play in the decarbonization of the US economy (Or-
rell et al., 2021). In addition to helping to reach decarboniza-
tion goals, small wind turbines, standalone or as components
of hybrid power systems, have the potential to improve en-
ergy accessibility, equity, and security for rural and under-
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represented communities. Bednar and Reames (2020) report
stark disparities in the percentage of household income spent
on energy bills across the US, with disproportionately high
energy burdens falling on low-income, African American,
Latinx, and multifamily households. Fathollahzadeh et al.
(2021) note that Native American nations are approximately
10 times more likely to lack access to primary services, such
as electricity, than the average US household. To address this
disparity, Fathollahzadeh et al. (2021) propose a methodol-
ogy to establish electricity demand, simulate wind and solar
contributions in a hybrid system, and select an ideal hybrid
system installation location.

Consumer adoption of small wind is influenced by multi-
ple factors, including project costs, availability of incentives,
and confidence in the turbine’s ability to generate energy. The
last of these factors is strongly affected by the level of accu-
racy in the prediction of energy production at a site of de-
velopment interest (Fields et al., 2016; Acker et al., 2019).
Accurate energy production estimates begin with an under-
standing of the available wind resource. While large-scale
wind plants have the means to perform detailed observation-
driven wind resource and site assessments, small-scale wind
projects typically rely on models and assessment tools to
survey the energy production potential at a location of in-
terest (Drew et al., 2015). In this study, we evaluate the
performance of wind resource assessments at small wind
hub heights (10 to 50 m) based on three models and re-
analyses available to the small wind industry: the Wind In-
tegration National Dataset (WIND) Toolkit developed by
the National Renewable Energy Laboratory (Draxl et al.,
2015a), the European Centre for Medium-Range Weather
Forecasts (ECMWF) Reanalysis v5 (ERA5) (Hersbach et
al., 2020), and the National Aeronautics and Space Admin-
istration (NASA) Global Modelling and Assimilation Of-
fice (GMAO) Modern-Era Retrospective Analysis for Re-
search and Applications, version 2 (MERRA-2) (Gelaro et
al., 2017).

Validations of models that provide wind resource simu-
lations are plentiful but tend to focus on heights near the
surface (10 m or less) (Carvalho, 2019; Wang et al., 2019;
Gruber et al., 2019; Molina et al., 2021) or are relevant to
utility-scale and offshore wind hub heights, typically 50 m
and higher (Draxl et al., 2015b; Olauson, 2018; Gruber et
al., 2019; Jourdier, 2020; Brune et al., 2021). Typical small
wind turbine hub heights range between 10 and 50 m (Orrell
et al., 2018, 2021), and model wind speed validations at these
heights exist in more limited quantities. Ramon et al. (2019)
validated reanalysis-based wind speeds using 77 global me-
teorological towers with measurement heights ranging from
18 to 122 m. They found median seasonal biases between
0 and −1 ms−1 and correlation coefficients around 0.8 for
ERA5 and MERRA-2, however error metrics according to
height above ground were not specified. Kalverla et al.
(2020) analyzed measurements ranging from 27 to 315 m
over the North Sea and determined that ERA5 underesti-

mates the observed wind speed by ∼ 0.5 ms−1 across the
vertical wind speed profile. For three sites in California with
wind speed measurements at 30 m, Hodge (2016) determined
seasonal and diurnal correlation coefficients for the WIND
Toolkit ranging from 0.40 to 0.96. At locations in Colorado
and Washington, Poudel et al. (2019) found WIND Toolkit
wind speed biases at small wind hub heights of −1.1 and
−0.63 ms−1, respectively. In Arizona, Acker et al. (2019)
found the WIND Toolkit to be a satisfactory wind speed data
product for simulating annual energy production within a
computational flow modeling framework. This work aims to
provide a more complete understanding of simulated wind
speed performance at small wind hub heights in order to
highlight areas of improvement for model developers and to
educate small wind adopters on the limitations of the mod-
eled data.

Our analysis continues with an evaluation of four en-
ergy production simulation tools: the System Advisor Model
(SAM) from the National Renewable Energy Laboratory
(NREL) (2021a), Wind Report from Bergey WindPower Co.
(2021), MyWindTurbine.com from the Technical University
of Denmark (DTU) Wind Energy research organization and
Energi- og MiljøData (EMD) International A/S (2021), and
the energy yield calculations from Global Wind Atlas 3
(GWA3) from DTU Wind Energy and World Bank Group
(2021). These user-friendly and budget-friendly tools com-
bine wind resource models, such as the WIND Toolkit, with
included or user-added power curves and loss assumptions
to produce site-specific annual energy production estimates.
While validations of SAM exist for solar technology using
actual plant performance data (Freeman et al., 2013, 2019;
Rudié et al., 2014; Ezeanya et al., 2018), we were unable to
determine similar validations of SAM for small wind sys-
tems. Similarly, no validations of Wind Report or GWA3 us-
ing small wind turbine production observations were able to
be identified. Bechmann et al. (2016) provide a performance
evaluation of MyWindTurbine.com using 20 small wind tur-
bines in Denmark, but we note that the wind resource datasets
specific to Denmark employed by MyWindTurbine.com are
different and presumably better than the datasets used for the
rest of the world and recommend more expansive validation
efforts. This study will provide validations for all four tools
across the United States using actual small wind turbine per-
formance data so that small wind adopters are made aware
of the uncertainties associated with each tool and can make
adjustments to output expectations accordingly.

The remainder of this paper is organized as follows: in
Sect. 2, the wind speed and energy production observations,
models, and tools considered in the study are described. Sec-
tion 2 concludes with a discussion on the error metrics em-
ployed to validate each model and tool. Section 3 presents the
findings of the validation, beginning with the overall model
wind speed performance metrics and continuing into a dis-
cussion of these results according to the diurnal cycle and ob-
served wind speed class. Section 3 proceeds with the energy

Wind Energ. Sci., 7, 659–676, 2022 https://doi.org/10.5194/wes-7-659-2022



L. M. Sheridan et al.: Validation of wind resource and energy production simulations for small wind turbines 661

Figure 1. (a) Number of locations and annual average observed wind speeds determined from the measurements made in each state (states
with insufficient observations at small wind heights are indicated in grey) and (b) histogram of wind speed observations according to mea-
surement height.

production validation and explores these results according to
geographic region, turbine type, and hub height. Section 3
concludes with an investigation into the sources of discrep-
ancy between actual and simulated small wind turbine pro-
duction, quantifying the potential impact of each identified
source on the accuracy of the simulations. Finally, Sect. 4
summarizes the results of Sect. 3 into a comprehensive guide
to understanding the uncertainty in wind resource and en-
ergy production estimates for small wind turbines, provides
recommendations for application of the findings to real world
small wind turbine resource assessments, and concludes with
an outlook into new and upcoming advancements in simula-
tion technology that will benefit the small wind community.

2 Data discussion and methodology

2.1 Wind speed observations

The observational wind speed datasets for this study are
drawn from US Department of Energy National Labora-
tories (Argonne National Laboratory, Brookhaven National
Laboratory, NREL, Oak Ridge National Laboratory, Pacific
Northwest National Laboratory, Savannah River National
Laboratory), the National Oceanic and Atmospheric Admin-
istration (National Centers for Environmental Information,
National Data Buoy Center), the Bonneville Power Admin-
istration, the University of Massachusetts, and the first Wind
Forecast Improvement Project (Wilczak et al., 2015). These
in situ measurements were gathered from anemometers on
meteorological towers or collected using sodars. Taken to-
gether, this data collection combines publicly available data
(46 sites), data available upon request (1 site), and data sub-
ject to non-disclosure agreements (15 sites) as outlined in the
data availability statement.

The 62 resulting observations are diverse in geography
and terrain complexity, spanning 27 states (Fig. 1a), and

height above ground (Fig. 1b). Several observations on is-
lands are included because small wind turbines play a role
in mitigating electrical power generation costs in remote
and isolated communities (Devine et al., 2004; Dilley and
Hulse, 2007; Kolbert, 2008). To ensure a high-fidelity ref-
erence dataset for validation, the wind speed observations
are quality-controlled via the removal of instances or peri-
ods of atypical or unphysical reported wind speeds (less than
0 ms−1, greater than 50 ms−1, or nonvarying values over pe-
riods of time greater than 3 h). In order to maintain represen-
tation of the seasonal cycle and consistent standards for com-
parison of error metrics on a site-by-site basis, wind speed
observations with 80 % or greater data recovery for each
complete year of the data record are included. The tempo-
ral coverage of the wind speed observations ranges from 1–7
years, with an average of 4 years. For the 48 observations that
cover 2 years or more, the interannual standard deviations of
annual average wind speeds range from 0.01 to 1.25 ms−1

with an average standard deviation of 0.24 ms−1. The max-
imum interannual differences between annual average wind
speeds range from 0.02 to 3.33 ms−1 with an average maxi-
mum difference of 0.58 ms−1.

2.2 Wind resource models

Wind resource estimates from three commonly used mod-
els or reanalysis products are evaluated in this study and
described in Table 1. The WIND Toolkit is specifically de-
signed to support wind integration studies (Draxl et al.,
2015a), while ERA5 (Hersbach et al., 2020) and MERRA-
2 (Gelaro et al., 2017) are reanalysis products that provide a
broad spectrum of atmospheric variables, including wind in-
formation, and are commonly employed in wind energy stud-
ies (Olauson, 2018; Rabbani and Zeeshan, 2020; Pryor and
Barthelmie, 2021; Samal, 2021). While the WIND Toolkit
covers a shorter period of time than the reanalyses and does
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Table 1. Characteristics of the models and reanalyses that produce wind speed estimates.

Product WIND Toolkit ERA5 MERRA-2

Developer NREL ECMWF NASA GMAO

Temporal coverage 2007– 2013 1950–present 1980–present

Temporal output frequency 5 min 1 h 1 h

Spatial coverage Continental US Global Global

Horizontal grid spacing 2 km 31 kma 0.5◦ latitude × 0.625◦ longitude
(∼ 50 km in the continental US)

Vertical wind speed heights employed 10, 40, 60 m 10, 100 m 10, 50 m
in small wind resource assessment

a The data have been converted from the native reduced Gaussian grid to a regular latitude–longitude grid at 0.25◦ (Hersbach et al., 2020).

not include data assimilation, it provides better spatial and
temporal resolution (Table 1).

For each of the gridded model datasets in Table 1, two
horizontal interpolation techniques are considered in the
validation analysis: nearest neighbor (selecting the closest
geographical grid point to the observational location) and
distance-weighted (triangulation-based linear interpolation
to the observational location using the four surrounding grid
points). Vertically, if an observational height is identical to
a model output height, the wind speed at that model output
height is employed in the validation with no adjustment. Be-
cause each model in Table 1 outputs wind speed informa-
tion at or above and below each height z in the observational
wind speed collection, the power law shown in Eq. (1), in
conjunction with a dynamic shear exponent (α), as shown in
Eq. (2), calculated using the simulated wind speeds vlo and
vhi from the two surrounding model heights zlo and zhi, is
employed for locations requiring model adjustment to mea-
surement height. This vertical interpolation scheme for simu-
lation of the wind speed at the measurement height is selected
because it considers multiple levels in the wind speed profile
and does not rely on static stability assumptions (Olauson
and Bergkvist, 2015).

v = vlo

(
z

zlo

)α
(1)

α =
ln
(
vhi
vlo

)
ln
(
zhi
zlo

) (2)

The horizontal and vertical interpolation schemes em-
ployed in this validation were evaluated for the WIND
Toolkit by Duplyakin et al. (2021), and their resultant er-
ror metrics were found to vary minimally according to these
and other interpolation schemes. This work builds upon their
findings and extends the horizontal interpolation comparison
to coarser models, namely ERA5 and MERRA-2, for which

Table 2. Small wind turbine models employed in the validation.

Turbine manufacturer Turbine Rated Number of
model capacity turbines

(kW)

Bergey WindPower Co. Excel 10 8.9 40
Bergey WindPower Co. Excel 15 15.6 5
Endurance E-3120 56 5
Southwest Windpowera Skystream 3.7 2.1 5

a Southwest Windpower closed in 2013, and the remaining Skystream assets were
acquired by the now-defunct XZERES Corporation. The Skystream turbine models
included in this analysis were installed in 2008 through 2012.

the choice of interpolation scheme may yield more signifi-
cant differences in the resultant simulated wind speeds.

2.3 Energy production observations

The energy production observations utilized in this valida-
tion are from individual small wind turbines courtesy of
APRS World; Argonne National Laboratory; Bergey Wind-
Power Co.; Claverack Rural Electric Cooperative, Inc.; and
the New York State Energy Research and Development Au-
thority. Similar to the observational wind speed collection,
the energy production observations from 55 turbines are di-
verse in geography and terrain complexity, spanning 24 states
(Fig. 2a), and in turbine hub height (Fig. 2b). Four differ-
ent turbine models with rated capacities ranging from 2.1 to
56 kW are included in the observational collection, as shown
in Table 2 with their associated power curves displayed in
Fig. 2c.

To allow for comparisons with simulated annual energy
production estimates, years of energy production observa-
tions with significant data outages (i.e., more than 1 month
duration) are excluded from this validation. The temporal
coverage of the energy production observations ranges from
1–10 years, with an average of 5 years. The resolution of tur-
bine availability data ranges from no availability data pro-
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Figure 2. (a) Number of locations and annual average capacity factors per state (states with insufficient small wind turbine production
observations are indicated in grey), (b) histogram of turbine hub heights, and (c) turbine power curves employed in this study.

vided to highly detailed availability data, as in the APRS
World and Bergey WindPower Co. collection, which pro-
vides the percent of time each turbine is running, waiting
for wind, and stopped for a variety of reasons. In order to
facilitate the comparison of energy production across tur-
bines with different rated capacities, the average annual en-
ergy production from each turbine is divided by the product
of the unique turbine rated capacity and the number of hours
in 1 year, resulting in a capacity factor percentage. The 55
turbines employed in this validation produced capacity fac-
tors ranging from 1.7 % at a location in the Southeast, a re-
gion characterized by lower wind resource relative to the rest
of the United States (NREL, 2021b), to 28.2 % at a local ele-
vation maximum in the Northeast.

2.4 Energy production tools

Four simple, user-friendly tools for energy production simu-
lation are evaluated to establish a baseline of accuracy of the
estimates and to assess the trade-off between tool efficiency
and accuracy. SAM, Wind Report, MyWindTurbine.com,
and GWA3 provide localized annual energy production es-
timates in kilowatt-hours in a matter of seconds to minutes
on a standard laptop computer. Each tool is driven by model
wind resource information that is either provided by the user
or more conveniently included in the tools, as reported in Ta-
ble 3. GWA3 provides the highest-resolution wind resource
data at 250 m. By default, SAM employs the WIND Toolkit
for wind resource data, and Wind Report sources wind re-
source data from a model with similar spatial resolution. My-
WindTurbine.com uses model wind resource data from the
Global Wind Atlas 1 (GWA1) with a spatial resolution sim-
ilar to MERRA-2 for countries outside of Denmark. Within
Denmark, MyWindTurbine.com utilizes wind climate esti-
mates from Weather Research and Forecasting (WRF) model
output (Hahmann et al., 2014). SAM allows a user to select a
single year of WIND Toolkit wind resource data from 2007

to 2013 for annual energy production estimation, the default
of which is 2013.

The four tools allow a user to select a turbine model
(power curves provided or added by the user), hub height,
and geographic location to simulate annual energy produc-
tion. Two of the tools, SAM and Wind Report, allow users to
provide custom wind shear exponents that differ from the de-
fault values of 0.14 and 0.18, respectively. To account for the
losses that inevitably occur during the production life cycle
of an actual turbine, each tool is equipped with customiz-
able loss factors, with the default values shown in Table 3.
The Wind Report loss factor is attributed to turbulence, while
MyWindTurbine.com separates the loss assumptions into the
categories of availability and electrical losses. GWA3 pro-
vides a single factor to encompass losses due to array ef-
fects and availability. SAM provides 20 categories of loss
assumptions for wind turbines, including wake, availability,
electrical, turbine performance, environmental, and curtail-
ment/operational strategy losses. In addition to the static loss
assumptions, MyWindTurbine.com provides high-resolution
obstacle flow modeling to simulate wake loss. As this fea-
ture requires the knowledge of the precise dimensions of ob-
stacles, it is not considered in this performance analysis but
should be utilized in practice in order to take full advantage
of the MyWindTurbine.com modeling capabilities.

2.5 Error metrics and statistical significance

The wind speed validation employs three error metrics to as-
sess the accuracy of model representation of observed wind
speeds: wind speed bias, mean absolute error, and correla-
tion coefficient. The wind speed bias, i.e., the average differ-
ence over a time series of length N between the modeled
(vmod) and observed (vobs) wind speeds, informs a model
user whether their model of choice tends to overestimate
(positive bias), underestimate (negative bias), or accurately
represent (zero bias) the observed wind resource:
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Table 3. Characteristics of the tools that provide annual energy estimates evaluated in this study.

Tool SAM Wind Report MyWindTurbine.com GWA3 energy yield

Developer NREL Bergey WindPower Co. DTU Wind Energy, DTU Wind Energy,
EMD International A/S World Bank Group

Wind data source WIND Toolkit 3Tier GWA1∗ GWA3

Wind data spatial resolution 2 km 5 km 50 km 0.25 km

Default total loss assumption 18 % 10 % 7 % 10 %

∗ MyWindTurbine.com utilizes GWA1 for countries outside of Denmark. For Denmark, MyWindTurbine.com utilizes the WRF model (Bechmann et al., 2016).

bias=
1
N

N∑
i=1

(
vmod,i − vobs,i

)
. (3)

The mean absolute error (MAE) is the absolute difference
between the modeled and observed wind speeds, informing a
user of the magnitude of error:

MAE=
1
N

N∑
i=1

⌊
vmod,i − vobs,i

⌋
. (4)

Finally, the Pearson correlation coefficient informs a model
user of the degree to which the modeled and observed wind
speeds are linearly related, with values close to 1 indicating
a high degree of correlation:

correlation=∑N
i=1(vmod,i − vmod)(vobs,i − vobs)√∑N

i=1(vmod,i − vmod)2
√∑N

i=1(vobs,i − vobs)2
. (5)

For the energy production validation, we examine the results
in terms of capacity factor error, the difference between the
simulated and observed capacity factors.

Standard statistical methods are used to determine whether
observed differences between the error metrics produced by
the wind speed and energy production simulations are statis-
tically significant. Paired-sample t test and Wilcoxon rank
sum tests (Fay and Proschan, 2010) are used for pairwise
analysis between models and methods. These tests assess
the null hypothesis that the true mean (or median for the
Wilcoxon test) of the differences between observations is
zero. Significance is determined with an alpha threshold for
type 1 error set to 0.05. Hence, we reject the null hypothe-
sis and accept the alternative hypothesis that the differences
are significant when the observed p value is less than 5 %,
indicating a less than 5 % chance the observed differences
could be due to random chance. The Bonferroni method is
used to account for multiple comparisons while interpreting
the results. All statistical analyses are performed with the R
software environment for statistical computing version 4.0.

3 Results

3.1 Wind speed validation

Across the 62 sites providing wind speed observations,
the WIND Toolkit and MERRA-2 produce the smallest
absolute biases on average (Fig. 3a). The WIND Toolkit
slightly overestimates the observed wind speeds by an aver-
age of 0.2 ms−1, regardless of horizontal interpolation tech-
nique (nearest neighbor and distance-weighted). MERRA-2
slightly underestimates the observed wind speeds by a sim-
ilar magnitude, and the choice of interpolation technique
shows more impact on the results for this coarser product,
with biases of −0.2 and −0.1 ms−1 for the nearest-neighbor
and distance-weighted interpolation techniques, respectively.
ERA5 also underestimates the observed wind speeds and
produces the largest magnitude bias on average across the
sites: −0.5 ms−1 regardless of horizontal interpolation tech-
nique, a result that aligns with the findings of Kalverla et al.
(2020) for winds over the North Sea. Applying the t test to
the bias results reveals that the mean bias is significantly dif-
ferent from zero for ERA5 and not for the WIND Toolkit or
MERRA-2. The t and Wilcoxon tests reveal that for wind
speed bias, each model performs significantly differently
from one another, while the impact of horizontal interpola-
tion choice within each model is insignificant.

As shown in Fig. 3a, the wind speed models produce
bias magnitudes in excess of 3 ms−1 at several sites, each
of which are located among complex terrain. For instance,
the WIND Toolkit overestimates the observed wind speed
by nearly 4 ms−1 at a site in the Colorado Rocky Moun-
tains. ERA5 underestimates the observed wind speed at this
location, with a bias of −1.8 ms−1, while MERRA-2 pro-
duces very little bias (−0.1 ms−1). Interestingly, all three
models produce consistent and relatively high correlation
coefficients between 0.7 and 0.8 at this site. At two sites
along the Columbia River gorge in the Pacific Northwest,
ERA5 strongly underestimates the wind resource, with wind
speed biases of −4.6 and −3.3 ms−1. MERRA-2 also un-
derestimates the wind resource at these sites, with biases of
−3.7 and −1.9 ms−1. Conversely, the WIND Toolkit pro-
duces wind speed biases near zero at these locations.
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Figure 3. Wind speed (a) bias, (b) MAE, and (c) correlation across 62 sites as produced by WIND Toolkit, ERA5, and MERRA-2 using the
nearest-neighbor (NN) and distance-weighted interpolation (Int) techniques. The median error metrics are indicated with the red lines; the
25th and 75th percentiles form the blue boxed range; the minimum and maximum error metrics, excluding outliers, are in black; and outliers
are indicated with red plus signs. The mean error metrics are represented with black stars.

The three wind resource models produce similar values
on average for MAE, 1.7 ms−1 from the WIND Toolkit and
ERA5 and 1.8 ms−1 from MERRA-2 (Fig. 3b). The t and
Wilcoxon tests do not detect a significant difference between
the models for this metric; however limited sample size may
contribute to this result. Differences in MAE according to
interpolation technique are only significant for MERRA-2,
the coarsest product. The same sites in the Colorado Rocky
Mountains and the Columbia River gorge that produced the
largest-magnitude biases are also responsible for the MAE
outliers greater than 3 ms−1.

Significant differences in correlation between the WIND
Toolkit and MERRA-2 are not noted by the t and Wilcoxon
tests, and each model produces an average correlation of 0.74
(Fig. 3c). The correlations produced by ERA5, with an aver-
age value of 0.77, are significantly different from the other
two models. According to the t and Wilcoxon tests, choice
of interpolation technique is significant for this metric across
the models. The smallest correlations (less than 0.5) occur
for the coarser resolution models (ERA5 and MERRA-2) in
geographically diverse locations that feature complex terrain,
namely the Colorado Front Range, the hilly California coast,
the Columbia River gorge, and the Green Mountains in Ver-

mont. The highest correlations (around 0.9) occur at loca-
tions on islands or along the coasts of the Atlantic Ocean,
Pacific Ocean, Gulf of Mexico, and Great Lakes, where the
wind resource tends to be faster than further inland, and in
the upper Midwest.

3.1.1 Diurnal trends in simulated wind speed
performance

Model performance across the diurnal wind speed cycle pro-
vides important context for load balancing across standalone
small wind systems and as a complement to solar technology.
Comparisons between observed and modeled diurnal wind
speed cycles exist for the WIND Toolkit (Takle et al., 2017),
ERA5 (Jourdier, 2020), and MERRA-2 (Jourdier, 2020) at
a variety of heights above the ground. Because the shape of
the diurnal wind speed cycle varies according to height above
ground (Crawford and Hudson, 1973), among other factors,
it is of interest to examine model performance by hour at
heights specific to small wind development, as in Fig. 4. The
average diurnal patterns of MAE and correlation (Fig. 4b
and c) are consistent across the three models, with the lowest
MAEs and highest correlations achieved around local noon.
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Figure 4. Average diurnal wind speed (a) bias, (b) MAE, and (c) correlation across 62 sites at heights ranging from 10 to 50 m using
distance-weighted horizontal interpolation.

Figure 5. (a) Frequency of occurrences of observed wind speeds and (b) distance-weighted model wind speed bias according to observed
wind speed class. The median biases are indicated with the red lines; the 25th and 75th percentiles form the blue boxed range; the minimum
and maximum error metrics, excluding outliers, are in black; and outliers are indicated with red plus signs.

The hourly WIND Toolkit bias, however, follows a differ-
ent trend compared to ERA5 and MERRA-2 (Fig. 4a). The
WIND Toolkit bias reaches the most negative values during
the morning hours, while the ERA5 and MERRA-2 biases
reach the most negative values during the late afternoon.

3.1.2 Simulated wind speed performance according to
wind speed class

The simulated wind speed biases trend increasingly negative
with increasing observed wind, as presented in Fig. 5b. At the
slowest wind speeds, from 0 to 5 ms−1, the WIND Toolkit,
ERA5, and MERRA-2 tend to overestimate the observed
wind speed by 0.9, 0.4, and 0.8 ms−1, respectively. Given
the lower-altitude characteristic of small wind turbines, 50 %

of the observed wind speeds considered in the validation
fall into the slowest wind speed class (Fig. 5a). This re-
sult informs a user that converting the model wind speeds
to power may result in inflated energy production expecta-
tions, as there may be instances of the model wind speeds
exceeding turbine cut-in while the observed wind speeds are
actually below cut-in. As the observed wind speeds increase,
the biases exhibited by each model become more negative,
with the WIND Toolkit, ERA5, and MERRA-2 producing
biases of −5.2, −7.2, and −6.7 ms−1, respectively, for ob-
served wind speeds greater than 20 ms−1. Conversely to the
slow wind speed assessment, this result warns a user that
high-wind-speed turbine cut-out events may occur more fre-
quently than the models indicate. With the exception of the
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Figure 6. (a) Capacity factor error (simulated minus observed capacity factor) according to SAM, Wind Report, MyWindTurbine.com, and
GWA3 across 55 small wind turbines with hub heights ranging from X to Y m. (b) Simulated annual average wind speed according to SAM,
Wind Report, and MyWindTurbine.com at the 55 small wind turbine hub heights. (c) Simulated 10 m annual average wind speed according
to SAM, Wind Report, MyWindTurbine.com, and GWA3 at the 55 small wind turbine locations. (d) Simulated 50 m annual average wind
speed according to SAM, Wind Report, MyWindTurbine.com, and GWA3 at the 55 small wind turbine locations. The median values are
indicated with the red lines; the 25th and 75th percentiles form the blue boxed range; the minimum and maximum error metrics, excluding
outliers, are in black; and outliers are indicated with red plus signs.

slowest wind speed class, from 0 to 5 ms−1, the ERA5 and
MERRA-2 biases are not significantly different.

The outliers in the fastest speed classes in Fig. 5 reveal ex-
treme departures between the modeled and observed wind
speeds. At a location in west Texas with measured wind
speeds reaching 30 ms−1 at 40 m, the WIND Toolkit, ERA5,
and MERRA-2 underestimate the observed wind speeds
above 20 ms−1 by −20.7, −19.5, and −18.5 ms−1, respec-
tively. The positive bias outliers at speeds 15 ms−1 or greater,
i.e., cases where the models overestimate faster observed
wind speeds, are associated with coastal and mountainous
locations.

3.2 Energy production validation

Wind speed models are the essential foundations for wind en-
ergy production estimation, and identifying uncertainties and
trends in the former provides a similar starting point for eval-
uating the accuracy and representativeness of the latter. With
the baseline wind speed error metrics established, the valida-
tion continues with an examination into the performance of
four tools that utilize wind resource models to provide energy
production estimates for small wind turbines, namely SAM,

Wind Report, MyWindTurbine.com, and GWA3. The annual
energy production estimates (conveyed via capacity factors)
are produced using the default wind resource data included
with each tool and are net estimates that incorporate the de-
fault loss assumptions unique to each tool (Table 3). The
default wind resource data for SAM is the WIND Toolkit,
which was evaluated in Sect. 3.1. Wind Report employs wind
resource data from 3Tier with a similar spatial resolution to
SAM. MyWindTurbine.com utilizes wind information from
GWA1, which has a similar spatial resolution to MERRA-2.
GWA3 provides the highest-resolution wind resource data at
250 m.

The differences between the simulated and observed ca-
pacity factors across 55 turbines are displayed in Fig. 6a.
SAM, Wind Report, MyWindTurbine.com, and GWA3 all
tend to overestimate the observed energy production, a diver-
gence from the near-zero average biases noted for the wind
speed models, including the WIND Toolkit used by SAM.
SAM and Wind Report perform similarly, with average ca-
pacity factor errors (simulated minus observed capacity fac-
tor) of +2.5 and +4.2 percentage points, respectively, and
standard deviations of 6.0 and 7.1 percentage points, respec-
tively. MyWindTurbine.com shows the greatest overpredic-
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tion and more variability in the estimates, with an average
capacity factor error of +11.5 percentage points and a stan-
dard deviation of 8.8 percentage points. GWA3 overestimates
the observed capacity factors by an average of 7.3 percentage
points and a standard deviation of 6.7 percentage points. A
one-sample t test confirms that SAM is the best performing
tool in terms of capacity factor error, with a 95 % confidence
interval of 0.8–4.1 percentage points. Wind Report, GWA3,
and MyWindTurbine.com have 95 % confidence intervals of
2.2–6.1 percentage points, 5.5–9.1 percentage points, and
9.1–13.8 percentage points, respectively.

One cause for discrepancies in energy production esti-
mates across the tools and relative to observations is the
underlying wind resource information. SAM, Wind Report,
MyWindTurbine.com, and GWA3 are each driven by wind
resource datasets with different resolutions (Table 3) and
physical assumptions. Figure 6b shows the range of an-
nual average wind speeds produced by each tool (excluding
GWA3, which does not output annual average wind speed
information at the specific hub height needed for energy pro-
duction estimation) at the 55 small wind turbine hub heights
that range between 10 and 50 m. On average, MyWindTur-
bine.com produces a faster wind speed estimate of 5.7 ms−1

than SAM and Wind Report, which produce annual aver-
age wind speed estimates of 5.1 and 5.2 ms−1, respectively.
The standard deviations in annual average wind speed us-
ing SAM, Wind Report, and MyWindTurbine.com are 1.0,
0.9, and 1.2 ms−1, respectively. The maximum difference
among the annual average wind speed estimates produced
by the tools (0.6 m s−1) is similar to the maximum differ-
ence in mean model wind speed bias (between the WIND
Toolkit and ERA5) noted in Sect. 3.1 (0.7 ms−1). The t and
Wilcoxon tests reveal significant differences in both simu-
lated annual average wind speed and capacity factor error
among the tools. The simulated wind speed is likely a con-
tributor to the greater energy production overestimation us-
ing MyWindTurbine.com noted in Fig. 6a.

In order to include GWA3, which provides energy produc-
tion information, but not wind speed information, at each of
the actual turbine hub heights in the wind speed compari-
son, Fig. 6c shows the range of annual average wind speeds
produced by each tool at 10 m (i.e., the lower small wind
speed output height from GWA3) for each of the 55 turbines
in the validation study. On average, SAM, Wind Report, My-
WindTurbine.com, and GWA3 produce annual average 10 m
wind speed estimates of 3.9, 4.2, 4.6, and 4.1 ms−1, respec-
tively. Similarly, Fig. 6d shows the range of annual aver-
age wind speeds at 50 m (the higher small wind speed out-
put height from GWA3) produced by each tool for each of
the 55 turbines. On average, SAM, Wind Report, MyWind-
Turbine.com, and GWA3 produce annual average 50 m wind
speed estimates of 5.8, 5.8, 6.1, and 6.0 ms−1, respectively.

When exploring capacity factor error for the different
small wind turbines, capacity factor error is found to become
increasingly positive as the turbine rated capacity increases

for SAM, Wind Report, and GWA3, as seen in Fig. 7a. No
such trend is noted for MyWindTurbine.com. On average,
the smallest performance error is produced by Wind Report
for the Southwest Skystreams and by SAM for the Bergey
Excel 10s and 15s and the Endurance E-3120s. Similarly,
Fig. 7b shows that the SAM, Wind Report, and GWA3 ca-
pacity factor errors become increasingly positive as turbine
hub height increases, again with no trend noted for MyWind-
Turbine.com. On average, the smallest performance error is
produced by Wind Report for turbines with hub heights of
10–20 m and by SAM for turbines with hub heights greater
than 20 m.

The tools perform differently relative to each other in dif-
ferent regions of the United States (Fig. 7c). The greatest ca-
pacity factor errors produced by SAM are concentrated in the
Northeast, with capacity factor errors exceeding +10 per-
centage points at four turbines in New York (one along the
Lake Ontario coast, one along the Atlantic coast, and two in
hilly terrain). Wind Report similarly overestimates observed
energy production by more than +10 percentage points at
a variety of turbines in the Northeast and significantly un-
derestimates observed energy production (capacity factor er-
ror <−10 percentage points) at a coastal California turbine
and a turbine located in a hilly area of Vermont. Like Wind
Report, GWA3 significantly overestimates the observed en-
ergy production at a variety of turbines in the Northeast and
significantly underestimates observed energy production at
a coastal California turbine. MyWindTurbine.com, noted for
generating the greatest turbine energy production overesti-
mates, performs more similarly to SAM and Wind Report in
the Midwest and shows the greatest capacity factor error in
the Northeast. SAM and GWA3 show the least variability in
performance error in the Southeast, while Wind Report and
MyWindTurbine.com show the least variability in perfor-
mance error in the Southern Plains. On average, the smallest
performance error is produced by GWA3 in the West, Wind
Report in the Southeast, and SAM in the Southern Plains, the
Midwest, and the Northeast.

Classifying performance error according to the Coperni-
cus Global Land Cover 2019 categories (Buchhorn et al.,
2020) reveals the highest energy production overestimation
occurring in forested locations (Fig. 7d), with all four mod-
els producing the highest magnitude errors in this category
relative to the remaining land cover categories. In forested
locations, SAM, Wind Report, MyWindTurbine.com, and
GWA3 tend to overestimate the observed capacity factors
by 6, 8, 15, and 11 percentage points, respectively. In built-
up locations where the wind resource, like forests, is most
impacted by wake effects, the tools overestimate the ob-
served capacity factors by 4 to 10 percentage points. SAM
and Wind Report produce small errors for herbaceous veg-
etation/shrubland (2 and 3 percentage points, respectively)
and cropland (0 and 2 percentage points, respectively).
GWA3 produces errors around 6 percentage points for herba-
ceous vegetation/shrubland and cropland, while MyWind-
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Figure 7. Capacity factor error (simulated minus observed capacity factor) according to (a) turbine type, (b) hub height, (c) region, (d) land
cover, and (e) elevation difference across 55 small wind turbines. The median error metrics are indicated with the red lines; the 25th and 75th
percentiles form the blue boxed range; the minimum and maximum error metrics, excluding outliers, are in black; and outliers are indicated
with red plus signs.
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Turbine.com produces errors of 12 and 10 percentage points
for these categories, respectively. On average, the smallest
performance error is produced by SAM for all land cover
categories.

By considering the difference between the maximum and
minimum elevations within a 2 km radius of each turbine
using the ASTER Global Digital Elevation Model V003
(NASA EOSDIS Land Processes DAAC, 2019), we exam-
ine the performance of energy production tools according to
approximated terrain complexity (Fig. 7e). Of the four tools
considered in this validation, only MyWindTurbine.com ex-
hibits an average trend of increasing error with increasing
terrain complexity, with a capacity factor error of 3 percent-
age points for turbines surrounded by elevation differences
less than 50 m increasing to over 10 percentage points for all
higher elevation differences. The extremely low outliers for
Wind Report and GWA3 in the 200 m or more elevation dif-
ference category reflect the hilly, coastal California turbine.
On average, SAM produces the smallest capacity factor er-
rors for elevation differences between 50 and 150 m, while
Wind Report produces the smallest capacity factor errors for
elevation differences less than 50 m and greater than 150 m.

The large capacity factor errors noted in areas of complex
land cover and terrain and coastal interaction are consistent
with the large model wind speed errors noted for these terrain
types in Sect. 3.1. Given that high relative elevation locations
and coastal environments tend to exhibit enhanced wind re-
source (NREL 2021b), making them favorable choices for
small wind deployment, these results urge model and tool
users to be especially cautious in these locations and to uti-
lize the error metrics presented here to adjust energy produc-
tion expectations.

In addition to the challenge in energy production estima-
tion in areas of complex terrain and/or coastal interaction,
potential other sources of discrepancy in simulated energy
production performance exist. Additional potential sources
of discrepancy explored in the following sections include in-
terannual variability in the wind resource (due to the wind
datasets spanning different years), tool diversity in the han-
dling of height adjustment between the model data and the
desired hub height, and the representativeness of the differ-
ent loss assumptions employed by each tool.

3.2.1 Impact of interannual wind speed variability on
energy production estimates

One of the model wind resource aspects that contributes to
discrepancies in energy production estimates is interannual
variability. Simple tools build annual average wind resource
datasets based on individual years of wind data, averaged
multi-year wind data, or a typical meteorological year, the
last of which aims to represent a range of weather phenomena
while maintaining an annual average similar to a longer-term
average. Since the wind resource at a given location varies

Figure 8. Maximum minus minimum SAM simulated capacity
factor based on wind resource data from seven individual WIND
Toolkit years across 55 small wind turbines.

from year to year, the representativeness of the wind data
employed by a tool will similarly vary from year to year.

Interannual variability is found to significantly contribute
to the uncertainty in tool-based energy production estimates,
as explored in Fig. 8. For the 55 small wind turbines, SAM is
run using each of the 7 years of available WIND Toolkit data
(2007–2013), of which 2013 is the default selection within
the tool. At each site, we calculate the difference between
the maximum and minimum capacity factor achieved in the
ensemble of the seven runs. Figure 8 shows that interannual
variability in the wind resource is responsible for up to 6.5
percentage points of difference in simulated capacity factors,
with an average of 3 percentage points. The observational
discussion in Sect. 2 provides important context for the large
impact interannual wind speed variability has on discrepan-
cies in energy production estimates. The annual average wind
speed observations in Fig. 1a range from 2 to 9 ms−1, which
aligns with the steepest portions of the small wind turbine
power curves in Fig. 2c. This information, combined with the
observed interannual wind speed differences up to 3 ms−1 re-
ported in Sect. 2.1, provides a clear picture of how sensitive
small wind turbines are to variability in the wind resource.

3.2.2 Impact of vertical interpolation on energy
production estimates

A further aspect of the wind resource that contributes to dis-
crepancies in energy production estimates is the vertical in-
terpolation technique employed in tool calculations. Two of
the tools considered in this study, SAM and Wind Report,
employ the power law (Eq. 1) to adjust wind resource data
to a user-defined hub height. The shear exponent α (Eq. 2)
expresses the shape of the vertical wind speed profile and
is used to interpolate or extrapolate wind speed output from
one or more vertical levels to another. Observationally, the
shear exponent varies diurnally, seasonally, geographically,
and according to atmospheric stability. However, simple en-
ergy production estimation tools typically employ a single
value to characterize the vertical wind speed profile and ad-
just wind speeds to a desired hub height. This practice can
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Figure 9. Maximum minus minimum SAM simulated capacity fac-
tor based on wind resource data adjusted via four vertical interpo-
lation techniques across 50 small wind turbines. Five small wind
turbines are redacted from the analysis since their hub heights di-
rectly align with a WIND Toolkit output height, thus eliminating
the need for vertical interpolation.

lead to mischaracterizations of the actual wind resource at
a site of interest, warranting exploration into the degree of
impact vertical interpolation has on energy production esti-
mation.

For energy production simulations incorporating wind
speed data at a single height, SAM employs a default shear
exponent of 0.14, reflecting the commonly used one-seventh
law, which is an empirically estimated shear exponent that
assumes smooth terrain and neutral atmospheric conditions.
Others in the wind energy community, including members
involved in resource assessment and wind turbine design,
have migrated to using a larger shear exponent of 0.2 (Storm
and Basu, 2010), which is close to the default value of 0.18
employed by Wind Report. For energy production simula-
tions incorporating wind speed data at heights surrounding
the user-defined hub height, SAM employs linear interpola-
tion to vertically adjust wind speed data from the surrounding
model heights to the height of interest.

The impact of interpolation techniques on the resultant en-
ergy production estimates produced by SAM is found to be
minimal, as presented in Fig. 9. For each of the 50 small wind
turbines that require model wind speed adjustment to hub
height, SAM is run (1) using the power law in conjunction
with the nearest-neighbor WIND Toolkit height and a shear
exponent of 0.14, (2) using the power law in conjunction with
the nearest-neighbor WIND Toolkit height and a shear expo-
nent of 0.18, (3) using the dynamic power law of Eq. (1)
with the two surrounding WIND Toolkit heights, and (4) us-
ing linear interpolation of the two surrounding WIND Toolkit
heights. As in the interannual variability study, at each site
we calculate the difference between the maximum and min-
imum capacity factor produced by the four approaches. Fig-
ure 9 shows that for the majority of the small wind turbines
considered in this study, choice of vertical interpolation tech-
nique is responsible for less than 1 percentage point. The
maximum difference in capacity factor according to verti-

cal interpolation technique is 3.7 percentage points, with an
average of 1.4 percentage points.

3.2.3 Turbine availability

Of the 55 small wind turbines employed in this validation,
36 Bergey Excel 10s and 15s include information on the
amount of time each spent in the following states: (1) run-
ning, (2) waiting for wind, (3) stopped/fault, and (4) missing,
the last of which is estimated by comparing the number of
actual versus expected annual reports each turbine produces.
In contrast to the energy production validation, which ex-
cluded years of significant turbine outage, the following anal-
ysis considers all years of each turbine’s life cycle in order
to provide the small wind community with a comprehensive
sample of turbine availability. Figure 10 displays the annual
percentages of each operational state that the 36 turbines ex-
perience, organized by turbine age. The turbines are diverse
in geography and age, with representation in each major ge-
ographic region in the continental US and observations span-
ning 1–10 years.

The average (and median) time spent running ranges from
57 % to 68 % (63 % to 72 %) for turbines aged 8 years or
younger, dropping off to 46 % and 55 % (46 % and 53 %) for
turbines aged 9 and 10 years, respectively (Fig. 10b). This
decline in average time spent running may be due to the re-
duced sample size of older turbines rather than to age-related
degradation. Turbines aged 8 years or less spent on average
(median) less than 20 % (18 %) of their annual cycles wait-
ing for wind, increasing to 23 % and 31 % (16 % and 39 %),
respectively, for turbines aged 9 and 10 years.

While the states of running and waiting for wind are re-
lated to the available wind resource, the remaining states of
stopped/fault and missing can provide observational compar-
isons for the loss assumptions employed by the energy pro-
duction estimation tools. The annual average (median) per-
cent of time the turbines are in a stopped/fault state (Fig. 10d)
ranges from 2 % to 7 % (0 % to 2 %), and the annual average
(median) percent of missing data (Fig. 10e) ranges from 12 %
to 23 % (2 % to 15 %). The annual average percent of time
missing or spent in a stopped/fault state combined ranges
from 14 % to 30 %, exceeding the default loss assumption
percentages from three of the tools, namely Wind Report and
GWA3 with 10 % loss and MyWindTurbine.com with 7 %
loss. The loss assumption employed by SAM (18 %) is on
average the most representative of actual small wind turbine
losses. The median annual percent of time missing or spent
in a stopped/fault state combined ranges from 4 % to 18 %,
encompassing all of the default loss assumptions from the
four tools. In other words, except for a small proportion of
turbines that experience significant data outages, the loss as-
sumptions employed by the tools are representative of actual
small wind turbine losses.
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Figure 10. (a) Number of turbines with availability data. Annual
frequency of time that 36 small wind turbines are in states of
(b) running, (c) waiting for wind, (d) stopped/fault, or (e) missing
data.

4 Conclusions

An initial investigation of wind speed accuracy from three
commonly used models or reanalysis products (WIND
Toolkit, ERA5, and MERRA-2) at small wind turbine heights
(10–50 m) yielded average biases within ±0.5 ms−1 and
average MAEs less than 2 ms−1. However, a small wind
adopter located in an area of complex terrain (hills, moun-

tains, or coastal environments) should anticipate wind speed
bias magnitudes and MAEs up to 5 ms−1. In agreement with
trends noted by Gruber at al. (2019) and Duplyakin et al.
(2021), most model wind speed error metrics tend to be con-
sistent regardless of horizontal interpolation technique for
each of the three models assessed. The results also show that
the WIND Toolkit, ERA5, and MERRA-2 overestimate ob-
served wind speeds slower than 5 ms−1, a range that encom-
passes most turbine cut-in wind speed ranges, which can lead
to energy production overestimates. Conversely, the three
models tend to underestimate larger observed wind speeds,
which can impact energy production estimates by underpre-
dicting the amount of time spent at peak power and by un-
derestimating the number of turbine cut-out events.

Using actual turbine production data, four user-friendly
energy production estimation tools (SAM, Wind Report, My-
WindTurbine.com, and GWA3) were shown to overpredict
actual turbine performance. Using the default settings, SAM
and Wind Report overestimate observed turbine production
within 5 percentage points, while MyWindTurbine.com and
GWA3 overestimate observed turbine production by 11.5
and 7.3 percentage points, respectively. The underlying wind
speed data utilized by MyWindTurbine.com, which has a
spatial resolution similar to MERRA-2, was on average
0.5 ms−1 faster than the wind speed data utilized by SAM
and Wind Report at turbine hub height, accounting for some
of the discrepancy in energy production estimates among the
models. SAM employs the WIND Toolkit for wind speed
data, and Wind Report uses wind speed information at a simi-
lar spatial resolution to the WIND Toolkit. Similar to the sim-
ulated wind speed estimates from WIND Toolkit, ERA5, and
MERRA-2, the energy production estimation tools exhibited
challenges in complex land cover and terrain, overestimating
or underestimating the observed turbine production by more
than 10 percentage points in some forested, hilly, or coastal
regions. The default loss assumptions within SAM, Wind
Report, MyWindTurbine.com, and GWA3 (18 %, 10 %, 7 %,
and 10 %, respectively) fell within the median observed com-
bined stopped/fault and missing losses reported by actual
turbines, which ranged from 4 % to 18 %, indicating realis-
tic loss representation across the tools, despite their diverse
loss percentages. Additional refinement of loss assumptions
within tools has the potential to further improve net turbine
production estimates, either by customizing losses accord-
ing to land cover and terrain characteristics or by providing
comprehensive wake flow modeling when obstacle dimen-
sions are known, the latter of which is already provided by
MyWindTurbine.com.

Choice of wind speed reference year(s) yielded signifi-
cant influence on turbine production estimates (3 percent-
age points on average, with a maximum of 6.5 percentage
points), corresponding with the discussion of Hamlington et
al. (2015) that 1–2 years of wind measurements do not pro-
vide a sufficient data record for accurately predicting power
production at a wind plant. Contrastingly, choice of vertical
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interpolation technique for wind speed adjustment yielded
minimal influence on turbine production estimates (1.4 per-
centage points on average, with a maximum of 3.7 percent-
age points), consistent with the findings of Olauson (2018)
and Duplyakin et al. (2021). Given the significance of in-
terannual variability on turbine production estimates, the au-
thors recommend that small wind turbine production estima-
tors utilize a tool that provides a range of annual production
possibilities in order to set expectations for average-, high-,
and low-wind-resource years. For currently deployed small
wind turbines, an owner can estimate whether the wind re-
source during the current or near-future time period will be
above or below average by considering climate oscillations,
such as the El Niño–Southern Oscillation. Hamlington et al.
(2015) correlate La Niña events with faster wind speeds and
El Niño events with suppressed wind speeds across the US
Great Plains.

Given the significant time and costs associated with col-
lecting pre-installation on-site wind resource measurements
for small wind turbine deployment, the tools evaluated in
this paper provide essential value to the small wind com-
munity by providing quick, low-cost energy production es-
timates that can be adjusted using the validation results of
this study. In addition to the energy production estimates,
each tool offers unique features that are beneficial to the
small wind community. SAM and Wind Report provide cus-
tomizable wind shear exponents in their calculations, allow-
ing for energy production simulation under different atmo-
spheric stability regimes. MyWindTurbine.com enables users
to input actual building and vegetation dimensions into their
flow model in order to account for obstacle losses. GWA3
provides especially high spatial resolution for wind resource
and energy production mapping. Of significant importance
given the findings of this work, SAM incorporates multi-
ple individual years of wind resource modeling that provide
guidance on setting interannual energy production expecta-
tions.

Continuing advances in wind speed models, such as the
recent updates to the WIND Toolkit (Pronk et al., 2022) and
the Global Wind Atlas (2021) are critical to reducing un-
certainty in wind resource estimates and are anticipated to
similarly reduce uncertainty in energy production estimates
when they are incorporated into simulation tools. Reduced
uncertainty can improve customer confidence in the ability
of small wind turbines to generate energy and thus increase
financing opportunities for small wind projects, ensuring that
small wind turbines can continue to have a role in decar-
bonizing the US economy and in addressing the challenges
of energy accessibility, equity, and security endured by rural
and underrepresented communities. In addition to setting ex-
pectations for current users, the results of this study provide
baselines of comparison for future versions of wind speed
models, reanalyses, and energy production simulation tools.

Code and data availability. Much of the wind speed
measurement data that support this study are openly
available. Sodar-based wind speed observations from the
first Wind Forecast Improvement Project are available at
https://a2e.energy.gov/projects/wfip1 (Djalalova, 2021). The
near-surface wind speed measurements from the National
Centers for Environmental Information are available at https:
//www.ncei.noaa.gov/access/search/data-search/global-hourly
(NOAA National Centers for Environmental Prediction,
2021). Coastal wind speed observations from the National
Data Buoy Center are found at https://www.ndbc.noaa.gov/
(NOAA National Data Buoy Center, 2021). Meteorological
tower data from Argonne National Laboratory are available at
https://www.atmos.anl.gov/ANLMET/ (Argonne National Labora-
tory, 2020). Brookhaven National Laboratory meteorological data
are provided at https://wx1.bnl.gov/ (Brookhaven National Labo-
ratory, 2020). Meteorological tower data from NREL are found at
https://www.nrel.gov/wind/nwtc/data.html (NREL, 2020). Meteo-
rological tower observations from Oak Ridge National Laboratory
are available through the Lawrence Berkeley National Laboratory
interface at https://ameriflux.lbl.gov/sites/site-search/#filter-type=
all&has-data=All&site_id= (Lawrence Berkeley National Labora-
tory, 2020). Observations from Savannah River National Labora-
tory are available via the B2SHARE Tall Tower Dataset at https:
//b2share.eudat.eu/records/159158152f4d4be79559e2f3f6b1a410
(B2SHARE, 2020). Wind speed data from the Bonneville Power
Administration network of meteorological towers are available at
https://transmission.bpa.gov/Business/Operations/Wind/MetData/
default.aspx (Bonneville Power Administration, 2020). Wind
resource data from the University of Massachusetts can be found
at https://www.umass.edu/windenergy/resourcedata (University
of Massachusetts Wind Energy Center, 2020). Meteorological
tower data from Pacific Northwest National Laboratory are in the
process of being uploaded to https://a2e.energy.gov/ (last access:
21 March 2022) and for the present are available upon request
from the lead author. The remaining wind speed observational
collections are proprietary and were used under license for this
study and therefore are not publicly available.

The turbine production data are available for collaboration op-
portunities upon a case-by-case basis. If interested, please contact
the lead author.

The WIND Toolkit, ERA5, and MERRA-2 are pub-
licly available at https://www.nrel.gov/grid/wind-toolkit.html
(NREL, 2021c), https://www.ecmwf.int/en/forecasts/
datasets/reanalysis-datasets/era5 (ECMWF, 2021), and
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/
(NASA Global Modeling and Assimilation Office, 2021),
respectively. SAM is freely available for download at
https://sam.nrel.gov/ (NREL, 2021a). Wind Report is freely
available at http://www.newrootsenergy.com/page/wind_report
(Bergey WindPower Co., 2021) to dealers, key accounts, and
friends of Bergey WindPower Co. MyWindTurbine.com is avail-
able for purchase at https://www.mywindturbine.com/ (DTU
Wind Energy and EMD International A/S, 2021). GWA3 is freely
available at https://globalwindatlas.info/ (Wind Energy and World
Bank Group, 2021).

Scripts for data quality control, statistical analysis, and plotting
are available from the lead author upon request.
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