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A B S T R A C T   

The objective of this research is to reduce energy consumption from intra airport shuttle operations by opti-
mizing routes and schedules, without compromising on passenger travel experience. To achieve this objective, 
we propose an optimization model that generates optimal airport shuttle routes for a given set of constraints and 
a discrete-event simulator that evaluates the optimal shuttle routes in a stochastic environment to understand the 
tradeoffs between the amount of time passengers wait for shuttles, and shuttle energy consumption. The pro-
posed optimization model and stochastic simulation are tested using shuttle route data provided by the Dallas 
Fort Worth International Airport. Results indicate that optimized routes can lead to a 20% energy reduction in 
shuttle operations with a modest 2-min increase in average shuttle wait times. The optimization model and 
simulator presented here are designed to be generalizable and can be adapted to optimize shuttle operations at 
any major airport.   

1. Introduction 

Airports, like Dallas Fort Worth International (DFW),1 are considered 
‘special generators’ since a considerable portion of any cities’ traffic 
originates or terminates at an airport. Understandably, air travel holds a 
major stake in long-distance travel, particularly for trips greater than 
1000 miles from the point of origin (Bureau of Transportation, 2017). 
With air travel on the rise in pre-COVID times (Henao et al., 2018) and 
seeing a steady growth as travel is slowly returning to a new normal in 
light of the pandemic (Chokshi, 2020), it is reasonable to expect 
continued growth in passenger traffic to airports. Airport planning and 
operations focus on bridging the gap between a passenger reaching the 
airport and taking flight. Aspects of airport planning and operations 
span ensuring reliable ground access to airports (Malandri et al., 2017), 
ease of baggage handling (Budd et al., 2014), curb management, and 
infrastructure planning, not to mention the myriad airside operations. 
One such aspect of airport operations is transporting passengers to and 

from airport parking lots or rental car centers to the terminals. Within 
airport shuttle buses account for a considerable portion of the energy 
expenditure and emissions (that are within the control of the airport 
operators) at the airport. For example, the rental car shuttle fleet at DFW 
uses over 693,000 gasoline gallons equivalent (GGE) of compressed 
natural gas (CNG) and generates 5700 tons of CO2 each year (Kotz et al., 
2020). Therefore, optimizing within airport shuttle routes to minimize 
energy consumption, could increase the mobility and energy efficiency 
of airport ground transport operations. 

A passenger’s experience in accessing an airport can be broken down 
into three mutually exclusive portions. The first part is airport ground 
access (labeled ‘travel to/from the airport’), i.e., accessing an airport 
from anywhere in the city. Passenger experience for this leg of the 
airport trip is influenced by factors such as reliability of ground access 
(Malandri et al., 2017), ease of baggage handling (Budd et al., 2014), 
cost of airport access (Jou et al., 2011), or level of safety and security in 
ground access modes (Budd et al., 2016). The second part is terminal 
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access (labeled ‘travel within the airport premises’), that is travel from 
rental car center or parking facilities to the terminal. However, pas-
sengers must wait for some amount of time, and travel in these shuttles 
for a few minutes to reach the terminal. So, time can be an influencing 
factor in passenger travel experience. The final part is gate access 
(labeled ‘travel inside the terminal). Aspects that affect passenger 
experience in this part of the airport trip are wait time at the ticketing 
counters, security wait time, and wait time at the gates. Aspects of ‘travel 
to the airport’ (such a transit fares), and ‘travel in the terminal’ (such as 
wait time at the ticketing counters) legs of the airport journey are often 
not in the control of airport authorities, making it difficult to address all 
the factors noted above using a unified optimization framework. This 
work intends to focus on the aspects that airport authorities do have 
control over, hence aspects of passenger ‘travel’ experience within the 
airport premises’ are chosen as the topic of research. In particular, the 
research effort aims to optimize airport shuttle operations with shuttle 
wait times and in-vehicle travel times as the indicators for passenger 
travel experience. We believe that the solutions proposed from this 
research are both easy to implement and are well within the purview of 
an airport operation team’s authority. A naïve solution to improve 
passenger travel experience (i.e., minimize shuttle wait times and ride 
times) would be to increase the number of airport shuttles; analogously, 
electrification of the airport’s shuttle fleet would reduce an airports 
energy footprint. However, increasing the number of shuttles to mini-
mize passenger wait times is a sub-optimal and expensive solution, and 
electrifying an airport’s shuttle fleet requires large capital investments. 
By leveraging the power of data, modeling, and simulation, airport au-
thorities can optimize existing shuttle operations for energy efficiency 
and passenger satisfaction. 

Bus schedule and route optimization falls under the category of 
vehicle routing problems (VRP) where passengers with different origins 
and destinations are grouped to be served using a single vehicle. There is 
a wealth of literature on this topic both in the context of traditional 
transit route optimization (Zhao and Zeng, 2008; Yu et al., 2012), as well 
as taxi (Nunes et al., 2011), and ride hailing route optimization (Feng 
et al., 2014). However, the application of VRP in the context of airport 
shuttle route optimization is relatively sparse (Bao et al., 2018; Linqing 
et al., 2019), and research focusing on simultaneously tackling travel 
experience and energy/emission outcomes through vehicle routing is 
even sparser (Pei-Ying et al., 2013). One unique characteristic of the 
rental car center shuttle bus service at an airport is that the origin and 
destination pair can only be terminals and rental car center or rental car 
center and terminals. This characteristic allows us to better model the 
optimization and simulation problem with the existing data sources that 
are available through the airports. This paper adds to the limited liter-
ature on airport shuttle route optimization with customer satisfaction, 
and energy reduction handled simultaneously. This paper stands out 
from most of the existing literature on VRP and airport shuttle route 
optimization in that it is not a purely academic exercise. The problem 
identified in this paper is part of an ongoing collaboration between the 
National Renewable Energy Laboratory (NREL) and the Dallas-Fort 
Worth International Airport (DFW). Utilizing data from DFW, this 
research develops generic, open-source tools that any airport can use for 
within airport shuttle operations planning. 

For context, DFW is the fourth busiest airport in the world, with a 
record setting annual passenger traffic of 75 million passengers in 2019 
(Dallas Fort Worth Airport, 2020a). DFW is also the world’s largest 
airport to achieve a carbon neutral status (Dallas Fort Worth Airport, 
2020b). Air travel took a major hit due to the COVID-19 pandemic, and 
as many airports, DFW saw a 90% decrease in passenger traffic in March, 
and April 2020 (Brian New, 2020). As air travel resumes with enhanced 
safety measures, DFW has seen a faster increase in flight and passenger 
volumes compared to other airports and became the busiest airport in 
the world in May 2020 (Arnold, 2020). As the world heals from the 
pandemic, becoming more resilient and prepared for coming back to a 
‘new normal’, DFW could see a continued rise in air travelers in the 

months and years to come. Though COVID-19 as a special use case is 
definitely of interest, much of the work presented in this paper was 
carried out before the onset of the pandemic, and uses data from typical 
passenger traffic observed at DFW from December 2019 to February 
2020. We note however, that the methodology presented in this paper is 
valid for newer data and could be used on data collected after the onset 
of the COVID-19 pandemic. 

This paper proposes an optimization model combined with a discrete 
event simulator, to solve the ‘travel within the airport premises’ shuttle 
route optimization problem and explore tradeoffs between passenger 
wait times, and energy efficiency of transporting passengers between the 
rental car center and the terminals at DFW. These efforts focus on the 
rental car center shuttle operations due to their significant measured 
energy expenditure and miles driven relative to other routes, however 
the work described here could be adapted to other multi-stop shuttle 
routes. Data used in this study comes directly from data loggers installed 
on the airport shuttles, as well as spatial positioning on transit data 
provided by DFW (Transit, 2020). The optimization model is run with 
various combinations of constraints on shuttle headways, maximum 
passenger ride times, and passenger arrival rates. The discrete-event 
simulator takes the optimal solution for each scenario generated by 
the optimization model and simulates DFW shuttle operations using that 
solution for a period of four weeks to generate passenger wait time and 
energy consumption outputs. Results from the optimization model and 
the discrete-event simulator provides airport authorities with shuttle 
routes that simulations indicate will lead to a net saving in energy, while 
still providing a quality passenger travel experience. 

2. Literature review 

Vehicle routing problems can be traced to the 1960s with some of the 
early research efforts focusing on the traveling salesman problem (Lin, 
1965) and vehicle scheduling problems (Knight and Hofer, 1968; 
Christofides and Eilon, 1969). The necessity for vehicle routing research, 
and the resulting complexity of the solution approaches increased 
greatly over the past half century. Among recent efforts relevant to this 
research, Chien (I-Jy Chien, 2005) combined analytical and numerical 
techniques to optimize operational characteristics (headway, seat ca-
pacity, and route choice) of a feeder bus service, while satisfying con-
straints pertaining to vehicle schedules, bus availability, and budget. 
Yan et al. (2012) took route flexibility out of the equation to solve a 
schedule design problem for a fixed bus route. They developed a robust 
optimization model for the bus route schedule design problem 
addressing the bus travel time uncertainty and the bus drivers’ schedule 
recovery efforts. Their algorithm was tested using bus data from Suzhou 
city in China, and find that slack time, and the bus driver’s schedule 
recovery behavior are key factors for maintaining optimal bus schedules. 
Using data from Dalian City, China, Yu et al. (2011) used a parallel 
genetic algorithm based on Tabu search to optimize bus route headways. 
Using a hypothetical road network, Xiong et al. (2013) compare the 
performance of genetic algorithm (GA), and depth-first search algorithm 
(DFS) to find the optimal route and headway for metro stations com-
munity shuttles, and report that GA is more efficient and reliable in 
providing a solution. While some of the variables used in aforemen-
tioned studies are similar to the ones proposed in this paper, an 
important point of divergence here is that focus of this paper is on within 
airport shuttle operations (which deal with bursts of rider demand 
owing to flight schedules), whereas a majority of the studies presented 
above focus on traditional bus service operations (which see more uni-
form passenger demand). 

While studies on bus schedule, and route optimization in the context 
of a city’s transit services go well beyond the body of literature pre-
sented above, optimization of shuttle services in the context of special 
generators such as airports are relatively scarce. Even within the context 
of research on airport shuttles, most of the efforts focus on solving 
shuttle routing problems for travel to/from airports, where the shuttle 
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service caters to multiple origins but a common destination. For 
example, Bao et al. (2018) used a hybrid genetic algorithm to explore the 
factors that influence of the travel time reliability of airport bus routes to 
Nanjing Lukou International Airport in China. They used synthetically 
generated constraints on time, station, and service, and concluded that 
travel time reliability in the peak hour (7:00–8:00 a.m.) is greatly 
affected by the road conditions. While the reliability maximization 
framework proposed by Bao et al. (2018) is attractive, considering 
synthetic constraints is an important limitation of the study. Feng et al. 
(2014) formulated the airport shuttle pick up and drop off problem as a 
mixed integer program, and solved the problem using an exact approach 
as well as adaptations of two existing heuristic approaches. They tested 
the performance of their algorithms using real-world data from Wash-
ington, D.C., Dulles International Airport. Linqing et al. (2019) proposed 
a vehicle routing and scheduling method where network travel times 
can vary, which is a significant extension to general vehicle routing 
problems that consider travel time as a travel invariable parameter. This 
aspect is reflected in the current work by using network travel times 
pertaining to specific times of day in the optimization model, and also 
simulating the optimized routes in a stochastic environment. 

Linqing et al. (2019) proposed using passenger ratings of pick up and 
arrival time to define passenger satisfaction constraints. Pei-Ying et al. 
(2013) adopted mixed integer programming to solve the vehicle routing 
and scheduling problem, with an objective to minimize the emission 
footprint of airport shuttle services. Specifically, they analyzed the 
impact of customer position distribution, passenger demand, vehicle 
capacity, and degree of customer satisfaction on the fuel consumption 
outcomes of the optimized shuttle routes. As seen from the body of 
literature on airport shuttle operations (i.e., to travel to/from airports), 
there is evidence of using customer satisfaction as one of the measures in 
evaluating the performance of the proposed algorithms. In general, 
passengers’ expectation of travel time and waiting time are given lesser 
weightage (compared to reliability, or personal security) in the context 
of traveling to/from airport, as such shuttle trips are scheduled well in 
advance of the actual travel date and time. However, for within airport 
shuttles (i.e., transfers from rental car centers and parking lots to the 
terminal), passenger’s expectation of in-vehicle travel time and waiting 
time becomes higher as time is of the essence when passengers are trying 
to reach the terminal with a few minutes to an hour to catch the plane. 
Therefore, the routing and frequency settings of the shuttle bus in the 
study have higher impact on passengers’ travel experiences. Instead of 
using a categorical satisfaction parameter (i.e., 1-extremely dissatisfied 
– 5-extremely satisfied), we propose using the continuous quantities 
in-vehicle travel time and waiting time as the evaluation measures in 
this research effort. 

Exploration of the literature on vehicle routing and scheduling re-
veals some interesting themes. First, vehicle routing problems have been 
widely used in the context of city-wide transit schedule optimization. As 
for airport shuttle applications, most studies focused on airport access 
from city centers as opposed to shuttle services within an airport. Even 
among the studies that explore airport shuttle service route optimization 
(or general bus schedule optimization for that matter), only one study 
focused on an energy/emission related outcome (Pei-Ying et al., 2013). 
Second, all the studies identify a problem, solve it using an exact solution 
or a heuristic approach, and evaluate the performance of the optimiza-
tion algorithm. We found no studies that did in depth explorations of the 
tradeoffs between energy consumption and passenger waiting time via 
stochastic simulation of a massive numbers of optimization runs with 
different model parameters (e.g., headway, maximum in-vehicle travel 
time, and passenger arrival rates). In the real world, the stochasticity in 
passenger arrivals and loading/unloading shift the dynamics of the 
system away from the exact mathematical optimization model as-
sumptions. Therefore, stochastic simulation can be a useful tool for 
measuring vehicle fleet energy consumption and passenger waiting 
time. Finally, most of the studies reviewed used data from a real-world 
context for optimization and validation purposes, but none of the 

studies report on their solution being implemented in the field to 
demonstrate the benefit realized from optimized routes and schedules. 
This research effort contributes to the state-of-practice on airport shuttle 
route optimization by:  

1. Focusing on within airport shuttle operations as opposed to shuttle 
operations connecting city centers and airports. The in-airport 
shuttle service can be adopted for future “remote curb” operations 
to reduce the curbside congestion at the airport terminals.  

2. Providing a novel mathematical model for selecting routes, shuttles 
per route, and shuttle size per route, while evaluating for travel as 
well as energy related parameters of airport shuttle operations. This 
work adds to the sparse body of literature (Pei-Ying et al., 2013) that 
considers energy/emission reductions as an objective in shuttle route 
optimization.  

3. Integrating the optimization model with a discrete-event simulator 
to explore the tradeoff between passenger travel experience and 
energy outcomes of the optimization solution. 

3. Methodology 

As shown in Fig. 1, the model system being proposed in this paper 
consists of two modules: i) a route optimization model which solves the 
dispatching problem to provide a set of shuttle routes and determine the 
number of shuttles and shuttle type to serve each route, such that the 
energy consumption of the fleet is minimized, and ii) a discrete-event 
simulator that tests the performance of the solution provided by the 
optimization model in a stochastic environment (with varying dwell 
times, travel times, and arrival rates). 

With the route optimization model, our intent is to go one step 
beyond traditional vehicle routing solutions by incorporating energy 
consumption of the fleet in the decision space. The optimization model 
assumes that passengers arrive at a constant rate at bus stops, buses 
moving along routes are able to keep themselves evenly spaced along 
those routes, and that travel times between origin and destination pairs 
are constant. In reality passenger arrival at bus stops is stochastic and 
irregular, buses bunch up along routes, and travel times vary depending 
on many factors. Hence, we felt it was important to simulate the routes 
computed by the optimization model in stochastic setting over a 
reasonably long period of time to capture how those routes would really 
perform in a non-idealized setting. Therefore, with the discrete-event 
simulator, we aim to rigorously test the robustness of the solutions 
provided by the optimization model in order to reinforce confidence for 
the airport ground transport team that is envisioned to implement the 
optimized shuttle routing in the real world. Both these modules have 
been developed with effortless and intuitive implementation goals in 
mind. 

3.1. Optimization model formulation 

The optimization model used in this study is a mixed integer linear 
program where the user can specify the number of routes, capacity of the 
buses, allowable headways, and maximum in-vehicle travel time pa-
rameters. The solution generated by the model consists of a set of routes, 
each with a specified number of buses, and the capacity of the bus 
servicing it. As such, the optimization model presented here uses some 
concepts from the classical VRP with pick-up and delivery time win-
dows, but has been augmented and modified in many ways to accom-
plish the goals associated with the ‘travel within the airport premises’ 
problem. Table 1 presents the sets, parameters, and variables used in the 
model. The optimization model, and the adjoining constraints are pre-
sented in equations (1-24).; ; ; . 

minimize
∑

k∈T

∑

s∈S

∑

r∈R

hk, s, r  
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subject to 

− M
(
2 − ys, r − wk, r

)
+Ekns ≤ hk, s, r ∀k∈T s∈S r ∈ R (1)  

∑

s∈S

ys, r ≤ 1 ∀r ∈ R (2)  

T2n+1, r

γ
≤
∑

s∈S

nsys, r ,∀r ∈ R (3)  

∑

k∈T

wk, r = 1 ∀r ∈ R (4)  

∑

r∈R

∑

j∈N

xi, j, r = 1 ∀i ∈ P (5)  

∑

j∈N

xi, j, r −
∑

j∈N

xn+i, j, r = 0 ∀i ∈ P , r ∈ R (6)  

∑

j∈N

x0, j, r = 1 ∀r ∈ R (7)  

∑

j∈N

xj, i, r −
∑

j∈N

xi, j, r = 0 ∀i ∈ P ∪ D , r ∈ R (8)  

∑

i∈N

xi, 2n+1, r = 1 ∀r ∈ R (9)  

∑

j∈N

xj, i′ , r = xi′ , j′ , r ∀l ∈ L , r ∈ R , i′ ∈ D l, j′ ∈ P l (10)  

Tj, r ≥Ti, r + di + ti, j − M
(
1 − xi, j, r

)
∀i∈N , j∈N , r ∈ R (11)  

Tn+i, r −
(
Ti, r + di + ti, n+i

)
≥ 0 ∀i∈P , r ∈ R (12)  

Tn+i, r −
(
Ti, r + di

)
≤ δ − M

(

1 −
∑

j∈N

xi, j, r

)

∀i∈P , r ∈ R (13)  

− M
(
1 − ys, r

)
+

qiT2n+1, r

ns
≤ qi, r ∀i∈N , r∈R , s ∈ S (14)  

qi, r + qn+i, r = 0 ∀i ∈ P , r ∈ R (15)  

Qj, r ≥Qi, r + qj, r − M
(
1 − xi, j, r

)
∀i∈N , j∈N , r ∈ R (16)  

max
{

0, qi, r
}
≤Qi, r ≤min

{
∑

k∈T

Qkwk, r,
∑

k∈T

Qkwk, r + qi, r

}

∀i∈N , r ∈ R

(17)  

Ti, r, Qi, r , hk, s, r ≥ 0 (18)  

xi, j, r, ys, r, wk, r ∈ {0, 1} (19)  

xi, j, r ≤ zi, j, r ∀i ∈ N , j ∈ N , r ∈ R (20)  

zi, j, r + zj, i, r ≤ 1, ∀i ∈ N , j ∈ N , r ∈ R (21)  

∑

k∈N

xi, k, r +
∑

k∈N

xj, k, r − 1 ≤ zi, j, r + zj, i, r ∀i ∈ N , j ∈ N , r ∈ R (22)  

zi, j, r + zj, k, r + zk, i, r ≤ 2 ∀i, j, k ∈ N , r ∈ R (23)  

zi, j, r ∈ {0, 1} (24) 

The objective function presented in equation (1) seeks to minimize 
the average hourly energy consumption of the routes and shuttle fleet 
chosen by the optimization model. Constraints (2) and (3) ensure that 
each route r ∈ R available to the model is either not used and has no 
buses assigned to it, or it selects a value of 1 for exactly one of the ys,r 

variables which commits a number of buses to route r that satisfies the 
maximum allowable headway requirement set by the user. Constraint 
(4) ensures each route r is assigned exactly one bus type to service it 
(even if it is an unused route). The objective function (1) works in 
conjunction with constraints (2-4) to ensure the following condition: if 
ns buses of type k are assigned to route r, then the auxiliary variable hk,s,r is 
bounded by the resulting average energy consumption per hour of the buses 
assigned to route r, otherwise (1) is allowed to be zero. In other words, since 
the objective is to minimize the sum of the hk,s,r, equations (1-4) ensure 
that each hk,s,r = Ekns or hk,s,r = 0. Constraints (5) and (6) make sure that 
each request type is served exactly once by one route and that it is the 

Fig. 1. Route optimization for energy efficient airport shuttle operations: process flow chart.  
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same route that visits the pickup and drop-off nodes associated with the 
request type. Constraints (7-9) make sure that each route starts at the 
origin node and terminates at the destination node. 

Constraint (10) ensures that if a route does a drop-off at a terminal’s 
drop-off node, it must immediately visit the pickup node for that ter-
minal. Consistency and precedence of time variables on routes are 
enforced through constraints (11) and (12) . The maximum in-vehicle 
travel time for a passenger on each route is enforced via constraint 
(13). Constraint (14) uses the time to complete a route, the number of 
buses servicing that route, and the hourly arrival rate at a node to 
determine a lower bound to enforce on the variable qi,r. Constraint (15) 
ensures that if qi,r people are picked up at node i,the same number are 
dropped off at node i+ n. Constraints (16) and (17) ensure that the 
capacity of passengers on the bus is tracked from node to node, and that 
the occupancy of the bus never exceeds its capacity. Finally (18), and 
(19) provide basic constraints on the domains of certain variables. 
Constraints in (11) function as sub-tour elimination constraints for the 
model in addition to tracking the model’s time variables. Through 
computational experiments, we found that the solver found better so-
lutions when additional sub-tour elimination constraints (20-24) were 
included in the model. 

3.2. Discrete-event simulator 

To test the robustness of the solutions generated by the optimization 
model, we developed an open-source event-driven simulator named 
Airport Shuttle Planning and Improved Routing Event-Driven Simula-
tion (ASPIRES). ASPIRES was developed as a Python module to simulate 
and evaluate the current as well as optimized airport shuttle operations. 
ASPIRES takes the output of the optimization model and simulates 
airport shuttle operations using empirical probability distributions of 
travel times, dwell times, and passenger arrivals. The ASPIRES module 
addresses calibration issues faced by most traffic simulation packages by 
carrying out event-driven simulations based on empirical distributions 
of real-world data. Calibration is a difficult task in transportation 
simulation. The calibration result may not always reach a satisfying 
performance. The intent here is to let the data drive the simulation 
rather than calibrating or ground truthing the simulation. The ASPIRES 
module has been developed with rapid decision-making goals in mind 
and is optimized to simulate a days’ worth of airport shuttle operations 
in about a second. In contrast, microsimulation of the airport shuttle 
operations without considering the passengers statistics of the same 
magnitude using open-source tool. 

Simulation of Urban MObility SUMO (Krajzewicz, 2010) took about 
30 min. 

ASPIRES can derive empirical distributions of any parameter using 
real-world data. These distributions inform the event-driven simulation 
which executes all the events in airport shuttle operations at a rapid 
pace, and outputs performance statistics at the passenger- or the shuttle- 
level. Passenger-level statistics include wait time, queue length, un-
served demand (number of passengers left after a shuttle bus pickup), 
and total travel time (wait time + in-vehicle travel time). Shuttle-level 
statistics constitute occupancy, cumulative distance traveled, and en-
ergy consumed, location of each bus, and a record of on-demand routes 
used to pick up any passengers that could not be served by the regular 
shuttles. Passenger arrival is simulated using a Poisson process (with real 
world non-stationary arrival rates) in ASPIRES. Poisson process assumes 
that arrivals could happen at any point of time with a pre-defined 
probability during the simulation period. Poisson distribution is adop-
ted here as it allows for randomness in passenger arrivals and is one of 
the commonly used functions to simulate arrival processes with given 
arrival rates (Ross, 2014). Poisson process considers arrivals to happen 
at any time with a given probability, and does not assume that passen-
gers are arriving with a pre-defined transit timetable in mind. While air 
travelers do come to the airport with flight schedules in mind, it is very 
unlikely that they have information regarding airport shuttle timetable. 
Hence, the randomness assumption of the Poisson process fits our use 
case well. It should be noted that other distributions such as Weibull, 
Gamma, and Beta are also used to capture passenger arrivals, and could 
be explored in future extension of this research effort. Since passenger 
arrival rate varies across the day, aggregated arrivals by hour of the day 
were fed into the simulation. 

The movement of the buses is driven by the empirical distribution 
derived from the bus logger data at DFW. Instead of evolving from one 
time step to the next time step, ASPIRES jumps from one critical state of 
the system to the next critical state (a new event). When a bus arrives at 
a stop, ASPIRES will schedule the next event (i.e., leaving the bus stop) 
after a certain dwell time which is drawn from the empirical dwell time 
distribution at that time window. ASPIRES will mark the state of the bus 
to “leaving the bus stop” at the next event time (i.e., current simulation 
time + dwell time). The number of remaining passengers at the bus stop 
will be updated based on the number of passengers boarding the bus. 
When the bus leaves from one bus stop to the next bus stop, the simu-
lation progressed to the next event (i.e., arriving at a bus stop) based on a 
travel time number drawn from the empirical distribution of the travel 
times between the two stops from that time window of the day in the 
week. ASPIRES also captures the energy consumption associated with 
the travel time from the empirical distribution. Therefore, ASPIRES is 

Table 1 
Sets, parameters, and variables.  

Sets  

P  Set of nodes representing pickup requests, P = {1, ⋯, n}
D  Set of nodes representing drop-offs corresponding to a specific pickup, 

D = {n + 1, ⋯, 2n}
{o, d} Origin and destination of all buses, {o, d} = {0, 2n + 1}
N  P ∪ D ∪ {o, d}
R  Set of route ids 
S  Set indexing the possible allowed number of buses on a route 
T  Set of bus types 
L  Set of terminals 
D l  The drop-off node i ∈ D at terminal l ∈ L  

P l  The pickup node i ∈ P at terminal l ∈ L  

Parameters  
qi  Arrivals per hour at i for each i ∈ P . We note that qn+1 = − qi for each 

i ∈ P , and q2n+1 = q0 = 0.  
di  Dwell time at node i for each i ∈ P ∪ D  

ti, j  Travel time from node i to j where i, j ∈ N  

Qk  Capacity of bus type k for each k ∈ T  

Ek  Hourly energy consumption of bus type k for each k ∈ T  

ns  Number of buses in case s for each s ∈ S  

M  Large positive constant 
δ  Maximum allowable ride time for a passenger 
γ  Maximum allowable headway for buses 
Variables  
xi, j, r  Binary decision variable determining if a bus on route r traverses from 

node i to j where i ∕= j, i, j ∈ N , and r ∈ R  

zi, j, r  Binary decision variable determining if a bus on route r visits node i 
before j where i ∕= j, i, j ∈ N , and r ∈ R  

ys, r  Binary decision variable for choosing the number of buses on route r 
where s ∈ S , and r ∈ R  

wk, r  Binary decision variable for choosing the type of bus on route r where 
k ∈ T , and r ∈ R  

Qi, r  Continuous non-negative decision variable indicating the capacity of a 
bus on route r after visiting node i where i ∈ N , and r ∈ R  

Ti, r  Continuous non-negative decision variable indicating the time in 
hours after the route starts at which service begins at node i on route r 
where i ∈ N , and r ∈ R  

qi, r  Demand at node i on route r where i ∈ N , and r ∈ R  

hk, s, r  Continuous non-negative auxiliary decision variable used to construct 
the objective function where k ∈ T , s ∈ S , and r ∈ R   
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capable of addressing the impact of congestion on travel time and energy 
consumption during different times of day and days of the week. 

Shuttle bus routes are provided from the solution generated by the 
optimization model. As the fleet size and routes are expected to vary 
across the day (owing to variation in flight schedules and passenger 
demand), ASPIRES also constitutes a dispatcher that manages the 
number of buses on different routes. The dispatcher routine changes 
buses over to new routes as prescribed by the optimization model. 
Additionally, the dispatcher can be used to assign on-demand shuttles to 
cater to unserved demand (i.e., passengers left behind due to shuttle 
occupancy constraints). The aspects covered by ASPIRES make it an 
attractive tool for airports to test the solutions generated by optimiza-
tion routines before they are implemented in the field. 

4. Data description, simulation setup, and validation 

DFW provided access to their vehicles and data systems in support of 
this research effort. Firstly, DFW allowed NREL researchers to collect 
Controller Area Network (CAN) bus data from the airport rental car 
shuttles using vehicle data loggers resulting in approximately 100,000 
miles of 1 Hz data from 14 buses over a period of one month of shuttle 
operations (Kotz et al., 2020). Secondly, DFW provided Spatial Posi-
tioning on Transit (SPOT) data, which uses commercial hardware to 
capture information pertaining to shuttle operations. Some noteworthy 
functionalities of SPOT data are: i) providing automatic vehicle location 
updates; ii) calculating bus arrival predictions and assessing on-time 
performance of the shuttles; iii) managing vehicle headways and 
viewing shuttle schedules. SPOT data combined with CAN data provided 
the information required for the optimization model and the 
discrete-event simulator. 

4.1. Analysis of the CAN-based bus data 

The CAN data provides detailed information on the geolocation of 
the bus, which can be translated into various travel parameters such as 
trip distance, trip time, and dwell time at each shuttle stop. In addition, 
CAN data provides information regarding vehicle parameters such as 
speed, acceleration, engine power, and fuel consumption. Though the 
CAN data provides a wealth of information regarding shuttle operations, 
it is not fully immune to outliers. Data collected was processed using trip 
time as the criteria for identifying outliers. Trip times less than the 5th 
percentile, and greater than the 95th percentile were treated as outliers 
and excluded for use in the optimization and simulation modules. Since 
the CAN bus data did not have enough data points for each hour in the 
day, the 24-h time period was divided into three aggregations of 
12am–8am, 8am-7pm, and 7pm-12am, which were motivated by pas-
senger demand trends in the SPOT data. Missing data from the bus 
loggers was supplemented using a microscopic simulation model of the 
DFW road network (developed using SUMO). 

4.2. Analysis of the SPOT data 

SPOT data is obtained from a centralized service as a continuous data 
stream. Among other functionalities, SPOT tracks the time, location, 
boarding and alighting, stop, and route served by each bus. SPOT data 
from December 1, 2019 to February 17, 2020 was used for the purposes 
of this analysis. Though additional data is available, a conscious decision 
was made to test the algorithms for pre-COVID air travel and shuttle 
operations (which are representative of long-term operations at DFW). 
Like data collected from the CAN bus, SPOT data is prone to outliers 
owing primarily to errors introduced during the post-processing of 
sensor data. SPOT data provided by DFW was subjected to extensive 
cleaning and filtering before being used in the analysis. As one example 
of the cleaning and processing done, the total number of passengers on- 
board (as reported in the SPOT data) were tracked and the number of 
passengers boarding a shuttle were scaled down or curbed, when the 

number of passengers on-board reached the capacity of the bus. From 
the cleaned SPOT data, fleet size and frequency for each route as well as 
the passenger demand information at each stop was extracted. Fig. 2 
shows the service frequency for all DFW terminals across different times 
of day. From the figure, it can be observed that the current shuttle ser-
vices vary over the course of the day, owing to changes in flight traffic 
and resulting passenger demand. 

4.3. Computational experiments 

To explore the tradeoff between energy efficiency and passenger 
travel experience (i.e., passenger wait times), we carried out shuttle 
route optimizations for all permutations of the following parameters, 
leading to a total of 2268 model runs.  

• Days of the Week: M, T, W, Th, F, Sa, Su  
• Time Windows: 12am–8am, 8am-7pm, 7pm-12am  
• Arrivals Standard Deviations: 0, 1, 2  
• Maximum In-vehicle Travel Times: 15, 20, 25  
• Headways: 5, 7, 10, 15, 20, 25  
• Available Bus Type Cases: 43 seats, 14 and 43 seats 

Each model run (or scenario) could specify as many as five routes if 
desired. The arrivals standard deviation parameter indicates the number 
of standard deviations added to each mean arrival rate based on 
empirical distributions of arrivals. The optimization model detailed in 
equations (1-24); was implemented using the open-source mathematical 
modeling software Pyomo (Hart et al., 2017). Instances of the optimi-
zation model where run on the NREL High Performance Computer 
(HPC), Eagle, and the optimization was performed with the commercial 
solver, Gurobi (Optimization and Gurobi. "In, 2014). Through the course 
of the implementation, it was noticed that Gurobi was not able to prove 
optimality even after an hour of run time when the number of possible 
routes was increased to two or more. We believe this behavior is due to 
the expansive solution set and multiple distinct optimal solutions in the 
branch and bound tree causing difficulty in providing a certificate of 
optimality quickly. Thus, Gurobi was used as a heuristic by allowing it to 
run for an hour on each problem instance, and the best solution Gurobi 
found within that hour was taken as the optimal solution. Future 
research efforts could focus on custom algorithms designed to solve this 
type of combinatorial optimization model when larger number of 
possible routes must be considered. 

Using the optimized routes, we were able to construct a weeklong 
schedule of routes for each combination of maximum in-vehicle travel 
time, headway, arrivals standard deviation, and available bus types. 
This led to 108 distinct weeklong schedules of optimized bus routes, 
which were then simulated in a stochastic environment using ASPIRES 
for four consecutive weeks. We note that each four-week simulation 
began with a one-day warm-up period to allow the shuttle system to 
evolve to a typical operating state. 

4.4. Validation of baseline results 

In addition to simulating the 108 weeklong schedules of routes, a 
baseline case was run in ASPIRES to reproduce current shuttle opera-
tions at the airport. Parameters for the baseline case were agreed upon in 
close consultation with the DFW shuttle bus operation team. This 
simulation was also done for a four consecutive week period. The 
baseline simulation provided the basis for comparing optimized routing 
results and helped illustrate the tradeoffs between travel and energy 
efficiency for shuttle operations at the DFW airport. The baseline case in 
ASPIRES resulted in an average passenger wait time of 5.7 min to be 
picked up by a bus. We note that passenger wait time refers to the time a 
passenger waits at the curb to be picked up by a bus, unless specified 
otherwise. During typical operations DFW bus operations seeks to have a 
7-min headway between buses, which suggests the average wait time 
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from our baseline simulation is reasonable. The total energy consump-
tion of the rental car shuttle fleet for the baseline scenario came out to be 
11,895 GGE per week, with about 20 shuttles in operation at any given 
time. 

From DFW fuel and mileage logs, it was observed that the rental car 
shuttle fleet consumed on average a total of 13,342 GGEs each week 
from August 2018 to August 2019. This was taken as the ground truth (as 
this information was collected first-hand by DFW and provided to NREL 
researchers) to validate the output of the simulation module. For the 
baseline case described above, it was observed that the energy estimates 
based on a week-long simulation (using the ASPIRES module) of DFW’s 
rental car shuttle fleet resulted in an energy consumption of 11,895 
GGEs, which is about ~11% less than the ground truth. While the 
simulated value deviates slightly from the ground truth, an in-depth 
exploration revealed an interesting finding. The baseline simulation is 
based on collected CAN-based bus data, as well as boarding and 
alighting information from the SPOT data provided by DFW. From the 
baseline simulation, it was observed that there are on average ~20 
shuttles in operation at any given time. However, a quick analysis using 
the DFW fuel and mileage logs from August 2018 to August 2019 and the 
collected CAN-based bus data revealed that during that period there 
where on average ~23 shuttles in operation at any given time of the day. 
Since the SPOT data-based simulation resulted in a lower number of 
shuttles being in operation than the DFW fuel and mileage logs indicate, 
it is intuitive that the energy consumption estimate from the simulation 
is slightly lower than that of the ground truth. If the energy consumption 
estimates are scaled up from 20 to 23 buses, the relative error between 
observed and simulated values reduces to ~1.18% which can simply be 
attributed to noise in the simulation. This exercise reinforces confidence 
in the efficacy of the discrete event simulator, and its ability to accu-
rately simulate the bus system of interest in this paper. Also, this analysis 
reveals that there might be some discrepancies associated with the SPOT 
data that warrant further attention, or that bus operations at DFW from 
December 1, 2019 to February 17, 2020 had changed compared to op-
erations from August 2018 to August 2019. 

5. Model results 

5.1. Optimization model 

Fig. 3 presents the reference solutions for optimized routes on a 
typical Monday (using 43- seater shuttle buses). The maximum in- 
vehicle travel time (ivtt), headway (hw), and arrivals standard devia-
tion (sd) used for each of the scenarios is shown towards the left-hand 
side of each figure. In this figure, the rental car center is denoted with 
the letter “R”, and each of the terminals at DFW airport are denoted with 
the corresponding letters. The routes and the number of vehicles 
assigned to them resulting from each of the optimization solutions is 
noted at the bottom of the corresponding figure (for example, R-A-R; R- 
C-R etc.). Panels A and B of Fig. 3 show that when the maximum in- 
vehicle travel time is held at 15 min, shuttles take the shortest route 
possible between terminals and the rental car center (which are the 
standard shuttle routes currently used at DFW). Panels A and B also 
illustrate that changes to the hw and sd parameters can have a significant 
impact on the number of shuttles used. The combination of parameters 
presented in Panel A result in a maximum fleet size of 22, and a mini-
mum fleet size of 12 for the most and least busy times of the day, 
respectively. However, in Panel B when the headway is reduced to 5 min 
(meaning a greater number of shuttles per hour), 30–31 buses are 
required throughout the day. This increase occurs in spite of the fact that 
the sd parameter (which governs the passenger arrival rates) has been 
reduced from 2 to 1 which in theory is expected to reduce the required 
number of shuttles. 

From Panels C and D, we see that relaxing the maximum in-vehicle 
travel time constraint further to 20 min provides additional slack in 
the system resulting in optimal routes visiting multiple terminals before 
returning to the rental car center. Finally, when comparing Panels C and 
D, we see that a relaxation in headway from ten to 15 min and a 
reduction in the sd parameter from 2 to 1 result in a smaller fleet size 
across the board. 

5.2. Discrete-event simulator 

As was mentioned above, the base case simulation carried out on four 
weeks of data in ASPIRES resulted in an average passenger wait time of 
5.7 min to be picked up by a bus, on average ~20 shuttles in operation at 

Fig. 2. Service frequency for each terminal over a day.  
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any given time, and a total energy consumption of 11,895 GGE per 
week. Fig. 4 shows the average weekly energy consumption (GGE), and 
passenger wait times for the optimal routes when varying the headway, 
maximum in-vehicle travel time, and arrivals standard deviation pa-
rameters. Waiting times and energy consumption were similar between 
scenarios with only 43-seater buses compared to scenarios with a com-
bination of 43- and 14-seater buses. Hence, we only present results for 
the 43-seater bus scenarios, which reduces the total number of scenarios 
presented in Fig. 4 to fifty-four. Panel A in the figure presents heatmaps 
for the average weekly energy consumption from each four-week 
simulation carried out in ASPIRES, while Panel B presents the mean 
passenger waiting time resulting from each simulation. Higher energy 

consumption and wait time values are presented with darker shading in 
both panels. A scenario with a lighter shade for energy consumption as 
well as mean waiting time is the ideal scenario where the solution 
produced by the optimization model achieves good performance with 
respect to passenger wait time as well as energy efficiency. 

Generation of results shown in Fig. 4 involved a post processing step 
to remedy some unintuitive results produced by the optimization model. 
For example, it was observed that the optimization model would pre-
scribe the route R-A-R-C-R-D-R-E-R for a given time window instead of 
the following four routes: R-A-R; R-C-R; R-D-R; R-E-R. As such, the so-
lution identified by the optimization model meets all of the constraints 
defined in equations (1-24); ; ; , but it would not make for an attractive 

Fig. 3. Reference solution generated by the optimization model for a typical weekday using only 43-passenger buses.  
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solution in the real world. To remedy this, we introduced a post pro-
cessing step that would break up any routes such as R-A-R-C-R-D-R-E-R 
(that did not have any terminals bundled together) and split the number 
of buses prescribed to the single longer route across the new split ter-
minal routes. If four buses are assigned to the route R-A-R-C-R-D-R-E-R, 
the post processing step would split this into four routes (R-A-R; R-C-R; 
R-D-R; R-E-R) and assign a single bus to each route. This post processing 
step is not applied when terminals are bundled together on a single route 
(such as R-C-D-R-B-A-R-E-R). 

From Fig. 4, it can be observed that highest energy is consumed in 
cases where the constraints on maximum in-vehicle travel time, and 
headway are the most stringent (see lower left corner of the heatmaps in 
Panel A). These cases resulted in the highest number of buses across all 

the scenarios (for a visual of the optimal routes pertaining to these 
scenarios, see Panel B of Fig. 3). It is intuitive that the greater number of 
buses resulting from the optimization solution result in the lowest wait 
times across all scenarios (see lower left corner of the heatmaps in Panel 
B of Fig. 4). These scenarios lead to a ~20% reduction in passenger wait 
time at the expense of 50% increase in energy consumption. Conversely, 
routes where the headway and maximum in-vehicle travel time con-
straints are relaxed heavily resulted in lowest energy consumption and 
higher waiting times (see results towards the top right corner of Panels A 
and B), as lesser number of buses were prescribed by the optimization 
model for these scenarios (for example, Panel D of Fig. 3). 

Another noteworthy observation from Fig. 4 is that the scenarios 
where the standard deviation parameter was higher (i.e., higher 

Fig. 4. Shuttle energy consumption and passenger wait time outputs from the ASPIRES module.  
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passenger arrival rates used in the optimization model) resulted in 
greater energy consumption, yet lower wait times. It can be conjectured 
that a greater passenger arrival rate causes the optimization model to 
assign a greater number of buses to a given route and possibly change 
the routes prescribed (as it might become difficult to bundle the demand 
and hence the different terminal stops together). With a greater number 
of buses, it is straightforward to expect a higher energy consumption 
coupled with lower passenger wait times. Based on the energy con-
sumption and passenger wait time results, it is safe to say that energy 
efficiency and reduction in passenger wait time are conflicting goals that 
need to be balanced delicately by the airport authorities. The optimi-
zation model, and discrete-event simulation module presented here are 
developed to serve as decision support tools to the airport authorities to 
meet such competing objectives. 

From Fig. 4, it can be observed that there are some scenarios which 
provide useful tradeoffs between energy consumption and passenger 
wait times. For the scenario with a 20-min headway constraint, 15-min 
maximum in-vehicle travel time constraint, and sd = 2, the optimized 
routes resulted in a mean passenger waiting time of 7.7 min and total 
energy consumption of 9196 GGE. This translates to a 22.7% reduction 
in energy consumption from the baseline (where the energy consump-
tion was 11,895 GGE), with a modest 2-min increase in mean passenger 
wait times. As another corner case, the scenario with a 10-min headway 
constraint, 20-min max ride time constraint, and sd = 2s, sees a 30% 
energy reduction from the baseline (11,895 GGE → 8296 GGE), but this 
comes at a cost of 100% increase in mean passenger wait time. Based on 
these results, DFW might choose to go with the former case where 
sizeable energy reductions are made possible with a modest increase in 
passenger wait times. 

In Fig. 5 plots of the total energy consumption against the mean 
passenger waiting time are provided to help illustrate the tradeoff be-
tween these quantities. The red polylines indicate the Pareto frontier of 
each standard deviation setting explored in the optimization process. 
Although each point came from a setting that has already been opti-
mized, we can still see the trade-off between energy consumption and 
passenger service level. The results in Fig. 5 correspond to the data in 
Fig. 4. For reference, we circled the “knee” in the results. After the 
“knee,” the saving in energy becomes less significant as we compromise 
the passenger service level. Pareto frontier plots like the ones in Fig. 5 
can be used to support policy decision making by allowing the decision 
maker to clearly see the tradeoffs present between different decisions. It 
is intuitive that the energy consumption and the passenger service level 
compete against each other. We also observe that as the standard de-
viation in the optimization settings changes, the shape of the Pareto 
frontier changes as well. 

A caveat worth noting here is that the average passenger wait time 
sometimes simplifies underlying distribution of wait times, leading to 
corner cases that might be unacceptable in real world implementations. 
One such case is shown in Panel A of Fig. 6, which shows the passenger 
wait time distribution for the optimized routes with a 15-min headway 
constraint, 20-min maximum in-vehicle travel time constraint, and sd =

1. 
For this scenario, it can be observed from Fig. 4 that the optimized 

routes simulated in ASPIRES result in a 50% reduction in energy con-
sumption (11,895 GGE → 5971 GGE) with a 9.1-min increase in pas-
senger wait time from the baseline (5.7 → 14.8). While the tradeoff 
might seem reasonable from an energy reduction perspective, the 
average wait time increase only tells half the story. From the histogram 
presented in Panel A of Fig. 6, the distribution of the passenger wait 
times has a very long tail, which might be unacceptable for real world 
implementation. A converse case to this is with optimized routes where 
headway is set to 5 min, max ride time is set to 15 min, and standard 
deviation of passenger arrival rates is set to 1 (Panel B of Fig. 6). The 
passenger wait time distribution for the test case is better than the 
baseline scenario, but this comes at a 51% increase in energy con-
sumption w.r.t baseline (11,895 GGE →17,993 GGE). 

It is likely that the long tail in Panel A of Fig. 6 occurs due to the 
stochastic nature of the environment the routes are simulated in. In 
particular, passengers do not arrive at a uniform rate. This leads to in-
stances where passenger arrive in clusters and buses may need to leave 
people behind. Additionally, due to imperfect spacing, long gaps can 
occur between bus arrivals. These factors likely explain why, when 
simulated, routes can have mean passenger waiting times larger than the 
headway specified in the optimization model that produced the routes. 
Hence, these distributions provide strong evidence of the importance the 
ASPIRES module plays in the analysis of the routes produced by the 
optimization model. 

Fig. 5. Shuttle energy consumption versus passenger wait time.  
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6. Conclusion and future work 

Air travel has seen a steady growth for the past decade until the onset 
of the COVID-19 pandemic and is likely to continue to rise as restrictions 
and safety concerns ease. A majority of air travelers in the United States 
access airports by: i) getting dropped off by a family member or a taxi/ 
ride hail/hotel shuttle service; ii) using transit where available; iii) 
driving their own vehicle and parking at the airport; iv) driving a rental 
car. While passengers get dropped off at the curb in the first two cases, 
the latter two modes involve a transfer from a parking lot or a rental car 
center to the terminal using an airport shuttle. Satisfying their customers 
while also balancing against operational costs and growing emissions is 
a significant challenge for modern airports. While airports exercise some 
discretion in varying fleet sizes to service varying passenger demand 
across the day, the routes used by airport shuttles are often pre- 
determined and do not change significantly with demand, leading to 
travel time as well as energy inefficiencies. While airports have a great 
deal of flexibility in altering the shuttle schedules to improve passengers 
experience, they often lack the tools that can help them in making such 
decisions while considering the frontier of potential travel-energy 
tradeoffs. 

To approach this challenge, this paper presents a novel optimization 
model that builds on the traditional vehicle routing problem with pick- 
up and delivery time windows. To support this work, we leveraged data 
from DFW airport using both CAN-bus and SPOT real time vehicle 
tracking. The optimization model generates optimal routes for within- 
airport shuttle operations for a given set of headway, in-vehicle travel 
time, and passenger arrival rate constraints. To make the optimization 
problem solvable with reasonable computational resources, stochas-
ticity in the passengers’ arrivals and bus bunching effects were not 
captured in the optimization model. This necessitated evaluation of the 
optimized routes under a stochastic simulation environment, which led 
to the development of a high-performance stochastic simulation envi-
ronment (ASPIRES). Together, these tools allow for efficient exploration 
of a vast set of potential operational scenarios while considering the 
resulting benefits and costs of each potential configuration. 

The work presented here improves on classic solutions to routing 
problems by running the optimized routes through a discrete-event 
simulator. This gives airports the flexibility to test the robustness of 
the solutions generated even before they are implemented in the real 
world. From the results of the optimization model and the ASPIRES 
module, it was observed that stringent constrains on headway and 

Fig. 6. Histograms of passenger waiting times using routes obtained with model parameters specified.  
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maximum ride times lead to a greater number of shuttles required to 
serve the demand. This translates into a 20% reduction in passenger wait 
times, which comes at a cost of 50% increase in energy consumption 
from the shuttle operations. On the other hand, relaxing the constraints 
on headway and maximum ride times results in fewer shuttles operating 
on optimized routes. When run through the discrete event simulator, 
this solution leads to a 20% reduction in energy consumption with a 
modest 2-min increase in passenger wait times. These results can help 
DFW (or any airport) evaluate and implement solutions that balance the 
tradeoff between energy reduction and customer satisfaction. 

While preliminary results from application of the proposed model 
system to data from the DFW airport are encouraging, there are some 
shortcomings that need to be addressed in future research. As noted in 
the results section, the optimization model generates some unintuitive 
(and long) routes (such as R-A-R-C-R-E-R) that satisfy all the constraints 
of the model. This was remedied using a stop gap measure (with a post 
processing step) for now, but efforts are currently underway to inter-
nalize the constraints that avoid such solutions which perform poorly 
when simulated. Another limitation worth noting here is that the 
objective function in the optimization model included fleet energy 
consumption as the only factor being minimized. Future research efforts 
should expand the minimization function to include generalized costs 
that incorporate capital and maintenance as well as fuel costs of shuttle 
operations. Also, the solutions generated from this work are of little 
consequence if they do not make it to field implementation. The results 
from this work were presented to the DFW authorities, and we are 
currently in discussions with them to implement the best of the solutions 
generated from this work in order to determine the actual extent of 
travel and energy implications of the optimized shuttle routes. 
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