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Abstract
Modern machine learning and autonomous experimentation schemes in materials science rely on accurate analysis of the data 
ingested by these models. Unfortunately, accurate analysis of the underlying data can be difficult, even for domain experts, 
complicating the training of the models intended to drive experiments. This is especially true when the goal is to identify the 
presence of weak signatures in diffraction or spectroscopic datasets. In this work, we examine a set of as-obtained diffraction 
data that track the phase transition from monoclinic to tetragonal in a Nb-doped  VO2 film as a function of temperature and 
dopant concentration. We then task a set of domain experts and a set of machine learning experts with identifying which 
phase is present in each diffraction pattern manually and algorithmically, respectively; in both cases, the labels can vary 
dramatically, especially at the phase boundaries. We use the mode of the labels and the Shannon entropy as a method to 
capture, preserve and propagate consensus labels and their variance. Further we use the expert labels as a benchmark and 
demonstrate the use of Shannon entropy weighted scoring to test the performance of machine learning generated labels. 
Finally, we propose a material data challenge centered around generating improved labeling algorithms. This real-world 
dataset curated with expert labels can act as test bed for new algorithms. The raw data, annotations and code used in this 
study are all available online at data.gov and the interested reader is encouraged to replicate and improve the existing models

Keywords Artificial intelligence · Combinatorial materials science · Trust · Open data

Introduction

The past 5 years to 10 years are distinguished by a marked 
increase in the number of publications using data-driven 
methods (e.g., machine learning (ML)/artificial intelligence 
(AI)) by researchers in materials science, condensed matter 

physics and chemistry [1–4]. ML and AI are used often col-
loquially to signify the same concept; however, here we use 
ML to signify an algorithm that learns and adapts through 
experience, whereas an AI is a machine capable of simulat-
ing human thinking via learning. More recently, a confluence 
between ML and experimental automation, referred to as 
autonomous science has emerged [5, 6]. This new paradigm 
seeks to create robotic agents capable of planning studies, 
conducting experiments and making decisions on the next 
iteration of experiments as new information is gathered. To 
date, several autonomous systems have been demonstrated 
to expedite the discovery of organic hole-transport materi-
als [7], explore the toughness of additively manufactured 
plastic structures [8] and optimize the synthesis of carbon 
nanotubes [9]. Central to the application of ML to either 
autonomous or conventional experiments is the need for 
ground truth datasets to evaluate model performance. This 
is a need regardless of whether supervised or unsupervised 
methods are used.
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To date, much of the proof-of-concept work has relied on 
validating ML models against idealized datasets. However, 
this is insufficient for the generation of robust algorithms 
that can handle the autonomous exploration of novel mate-
rial systems which often occurs far from ideal conditions. 
Unfortunately, in experimental materials science, identifica-
tion of a universally accepted ground truth is seldom easily 
attained. Ground truth is inferred through observations of 
material interactions with external stimuli and analyzing 
it in the context of fundamental physical laws. Still, new 
understandings can emerge (e.g., the existence of quasic-
rystals [10]) and disagreements can continue indefinitely 
(e.g., structures of liquid and solid  H2O [11, 12]) about what 
correct ground truth is, even when interpreting the same 
data. Identifying ground truth can be further complicated 
by measurement noise, background and sample quality. In 
some cases, it is not possible to clearly identify the ground 
truth. In these cases, including the work described in this 
article, the ground truth can be approximated by community 
agreed upon (consensus) values or labels for a given material 
property or response that will be used to train or evaluate a 
ML model.

For instance, in autonomous studies of new materials, the 
protocols for synthesis, processing and characterization have 
not been optimized. But the search space is large, so the risk 
of pursuing a new model-suggested material in unexplored 
regions of chemical/processing space is balanced by the time 
lost optimizing the model uncertainty for previous measure-
ments. To reasonably achieve this balance, it is important to 
develop and benchmark models with datasets that accurately 
reflect the data to be experimentally generated. It is also 
vital that training and evaluation methods be developed to 
validate model performance on consensus ground truths that 
reflect measurement and annotation uncertainties. This is 
a known issue in the computer science literature, although 
most work focuses on removing crowd-sourcing bias and 
adversarial annotations, with relatively little work done on 
inferring ground truth based on a small set of expert annota-
tions as is often the case in materials science.[13–16]

In this work, we focus on a critical materials science task: 
validating the discovery of a new material through an under-
standing of its underlying crystal structure. Several recent 
studies have demonstrated autonomous X-ray diffraction 
platforms [17, 18] with the goal of automating this task. 
A specific application is the use of temperature-dependent 
phase mapping to identify the onset and completion of phase 
transformations as a function of composition and tempera-
ture. This is a non-trivial task: diffraction patterns even from 
a single phase can contain numerous peaks, each of which 
can broaden, shift, or vanish due to microstructural effects 
and signal-to-noise ratio. If a second phase is present, then 
identifying that phase may be complicated by peak overlap 
and SNR. Thus, it is not unreasonable that a group of experts 

provided with the same set of diffraction data will disagree 
about the positions of the phase boundaries. An additional 
complication is that context is important for interpreting 
diffraction patterns; comparison of patterns close in com-
position and temperature is often used to estimate the posi-
tion of boundaries. Context is also an issue for the technical 
literature where the primary data used to make the “ground 
truth” judgment have often been lost [19].

The first goal of this paper is to use a difficult to interpret 
diffraction dataset as a test case for investigating variability 
in human and machine labeling. The diffraction data were 
generated by performing temperature-dependent diffraction 
measurements on a  V1-xNbxO2-y “combinatorial” compo-
sition-spread sample discussed in detail in reference [20]. 
We provided the dataset to 5 experts in the interpretation of 
diffraction data and four materials data science experts and 
challenged them with labeling the phase(s) of each compo-
sition-temperature combination. The second goal is to dem-
onstrate the use of statistical tools to identify the consensus 
label (e.g., human vs. human and ML vs. ML) for each spec-
trum and to quantify the label’s uncertainty. In general, the 
human labels agreed with one another, except for in the spe-
cifics of where the phase boundaries were positioned, while 
the ML algorithms had substantially greater variance. The 
final goal is to demonstrate a statistical means of benchmark-
ing new ML labeling techniques to the consensus human 
labels (with variance). Finally, using these data, we propose 
an open materials challenge to humans and computers alike. 
The dataset, the human and machine-generated labels and 
the code used to generate the machine-generated labels are 
all available via data.gov [21]. We encourage the submission 
of new human and ML labels of the dataset which will be 
curated and added to the online dataset.

Experimental Procedure

The details of the synthesis method for the film used in this 
study and the associated deposition tool have been described 
elsewhere [20, 22]. Briefly, the films were deposited as layer-
by-layer  V1-xNbxO2-y composition spreads using combinato-
rial pulsed laser deposition. The targets were 25.4 mm  V2O5 
and  Nb2O5 disks that were ablated by a KrF laser at 10 Hz 
with energies between 200 mJ/pulse and 230 mJ/pulse. The 
films were deposited on 76.2 mm diameter silicon substrates 
in an oxygen partial pressure of 0.65 Pa to a maximum thick-
ness of 297 nm.The substrate was maintained at 793 K dur-
ing the deposition and was cooled back to room temperature 
in vacuum afterward.

For diffraction versus temperature measurements, a strip 
measuring 76.2 mm × 10 mm was cleaved from the center of 
the wafer. Compositional measurements were performed on 
this strip via X-ray photoelectron spectroscopy on a regular 
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grid and the values were interpolated to provide a set of 
x,y positions in roughly 1 at.% increments. The XPS meas-
urements were accurate to within 0.1 at.%, but uncertain-
ties in the interpolation and sample positioning result in an 
uncertainty closer to 0.3 at.%. X-ray diffraction measure-
ments were performed using a Bruker D8 Discover1 powder 
diffractometer. The system was equipped with a movable 
XYZ stage and a 2-D detector, and the sample was irradi-
ated with a Cu k-alpha micro-source (nominal beam size 500 
microns). The sample was mounted to a hotplate using sil-
ver paste. Diffraction measurements were taken isothermally 
for all compositions between temperature ramping to avoid 
hysteresis effects at 296 K, 303 K, 309 K, 318 K, 323 K, 
328 K, 335 K and 341 K. At each temperature, the sample 
was allowed to equilibrate for 10 min prior to performing a 
diffraction measurement, and the sample was measured in~1 
at.% increments. Each diffraction pattern was taken using a 
fixed geometry with an incident angle of 14° and the detector 
covering a 2θ range of 18.00° to 37.20°. Each pattern was 
integrated for 10 min.

Procedure for Labeling

The full grid of diffraction patterns for every composition 
and temperature combination is available in the CombiView 
[23] format at Data.gov [21]. 2The diffraction and ML 
experts were given the complete dataset and asked to label 
each diffraction pattern as exhibiting monoclinic, tetragonal 
or mixed phases. In other words, the human and ML experts 
were provided with 352 diffraction patterns (2-theta versus 
intensity) structured in the CombiView format, as described 
in the SI. Each diffraction pattern was explicitly linked to a 
Nb concentration, temperature and a wafer position. They 
were told to limit the composition range considered: to be 
below 20 at.% to 25 at.%; a sufficient range to fully capture 
the expected phase transformation. For comparison of the 
sets of labels, we considered diffraction patterns to samples 
with less than 25 at.% Nb for human labels and 20 at.% for 
ML labels. All human and ML labelers were told which 
material system the patterns came from (V, Nb containing 
oxide), provided the Nb composition, the measurement tem-
perature for each data point and asked to sort the XRD data 
into three classes. The process for generating human labels 
was not specified. The ML labelers were constrained to work 

in an unsupervised mode, without access to any pre-labeled 
data.

An anonymized, detailed write-up for how each human 
labeled the diffraction data is contained in the supplemen-
tary material. Generally, the methods employed by humans 
can be grouped into two classes, those that tracked the 
breadth of the diffraction peaks and those that tracked the 
intensity of the peaks. In the first class, various methods for 
approximating the full width half maximum (FWHM) were 
employed: (1) peak fitting with commercial diffraction soft-
ware, (2) monitoring the position at 1/2 of the max intensity 
of a peak and (3) using interactive data visualization soft-
ware (CombiView) to track the peak breadth. In the second 
class, the diffraction data were plotted via a contour map 
and the intensities as a function of spectrum number and 2θ 
were used to manually cluster the data into the three regions. 
In both instances, trends in either the FWHM or intensity 
as a function of composition and temperature were used to 
distinguish between the different phase regions.

The four ML labelers each used slightly different versions 
of spectral clustering with three clusters in their analysis. 
The specific implementation of spectral clustering was dif-
ferent depending upon the labeler, though all used some var-
iant of the radial basis function (RBF) [24] kernel to define 
the affinity matrix. The first ML labeler employed the default 
scaling factor (sigma=1) with a cosine distance-based [25] 
variant of the RBF affinity. The second ML labeler used the 
same cosine RBF affinity variant with a local scaling factor 
[26]. The third ML labeler used the standard RBF variant 
with the default scaling factor with an underlying distance 
metric that combines the pairwise cross-correlation between 
diffraction data with a compositional term. The final ML 
labeler first employed a variational autoencoder (VAE) [27] 
to learn two-dimensional representations of the diffrac-
tion data and then applied standard spectral clustering to 
the latent diffraction representations, using a scaling factor 
related to the number of VAE latent features. The tools used 
are summarized in Table 1.

Quantifying Consensus

To quantify the degree of consensus and uncertainty of the 
human and ML labels, we computed the Shannon entropy 
H(X) = −

∑n

i=1
P(xi)log(P(xi)) for the label distribution of 

each composition-temperature point. The entropy quantifies 
how informative the observation of a given label is when all 
observations are averaged over all possible outcomes. If all 
the labels for given data point agree the entropy is 0 and the 
value of the entropy increases as more labelers disagree. 
The mode of each label was used to generate the consensus 
label for each diffraction pattern, while the Shannon entropy 
was used to represent the label certainty. In the event of an 

1 Certain commercial equipment, instruments, or materials are iden-
tified in this paper in order to specify the experimental procedure ade-
quately. Such identification is not intended to imply recommendation 
or endorsement by the National Institute of Standards and Technol-
ogy, nor is it intended to imply that the materials or equipment identi-
fied are necessarily the best available for the purpose.
2 The data and code for generating the figures has been uploaded to 
data.gov pending final approval for release. They have been provided 
as a ZIP file addendum to the manuscript.
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even split, here we default to labeling the range as being 
mixed phase.

Results and Discussion

Dataset Introduction

VO2 is known to undergo a phase transformation from 
monoclinic to tetragonal phase transformation near 340 K 
[28]. This structural transition is associated with a change 
in the opacity of the films owing to a related metal–insula-
tor phase transformation [29]. Due to the proximity of the 
transition to room temperature, there has been significant 
interest in  VO2 as a smart window coating that would pref-
erentially reject infrared red light on warm sunny days. 
The addition of heavy elements such as W, Nb and Mo is 
known to rapidly suppress the transformation temperature 
below room temperature, often also impacting the width 
of the transition region [30–32].

Figure 1a presents a sample of the diffraction data, 
showing the temperature dependence of the diffraction 
pattern for a  V0.99Nb0.01O2 film from 303 to 338 K from 
reference [20]. Within this temperature range, a single 
peak is observed at a 2θ value of 28.1°, corresponding to 
monoclinic  VO2. At 328 K, a clear splitting of the peak 
is observed with a new peak appearing as a shoulder at 
2θ=27.9, corresponding to tetragonal  VO2. The  1st order 
nature of the transformation permits the co-existence of 
both phases possible within the transformation region. 
Finally, by 338 K, the tetragonal peak is the most intense 
one. Note that in this last scan, it is difficult to determine 
whether the asymmetry of this diffraction peak is instru-
mental noise or the presence of some residual monoclinic 
phase.

Using these attributions and previous measurements of 
the optical properties [20], it is possible to identify the onset 
temperatures of the transitions (e.g., the boundaries between 
the observed phase regions). From Fig. 1a, the onset tem-
perature for the start of the metal–insulator transition for 
 V0.99Nb0.01O2 is between 318 and 328 K, which is consistent 
with the previous report on this sample [20]. The clear bifur-
cation of the diffraction peak means it is likely that all the 
labels would exhibit strong consensus in identifying phase 
boundaries for such diffraction patterns.

Table 1  Comparison of spectral clustering preprocessing and hyperparameters

ML labeling technique Cosine Cosine-local-scaling Comp-distance VAE

Preprocessing Linear background sub-
traction, truncation from 
26.5°–29°

Linear background 
removal, 2θ truncation 
27°–28.5°

None Baseline subtraction, normaliza-
tion, truncation to 27°–28.75° 
and VAE

Composition range Nb≤24 at.% Nb≤25 at.% Nb≤20 at.% Nb≤21 at.%
Distance metric Cosine Cosine Cross-correlation + 

composition term
Euclidean

Scaling factor Sigma=1 Local scaling[26] Sigma=1 1/(number of VAE features/2)^(½)

Fig. 1  a Diffraction versus temperature for a  V0.99Nb0.01O2 sample 
in the library, illustrating the clear peak splitting of a martensitic like 
transformation from monoclinic to tetragonal structures. b Diffraction 
versus composition at constant temperature for a series of  VxNb1−xO2 
films illustrating a less clear transition from the monoclinic to tetrag-
onal structures
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Figure 1b presents the compositional variation of the 
diffraction pattern as Nb is substituted into  VO2 at room 
temperature. Up to 5 at.% Nb, the position (2θ) of the mon-
oclinic peak is relatively unimpacted, although the peak 
intensity decreases. Between 5 at.% Nb and 10 at.% Nb, the 
intensity of this peak decreases, the FWHM increases and 
the peak shifts to a lower angle. Similar broadening behavior 
of the primary diffraction peak as a function of composition 
has been reported previously by Yiang et. Al [32]. Finally, 
between 10 at.% Nb and 18 at.% Nb, the peak is observed to 
sharpen and increase in intensity. The peak position in this 
region starts at 27.8°, which corresponds to the tetragonal 
phase, but continues to shift to lower angle with increas-
ing Nb concentration. The lack of peak splitting makes the 
determination of the borders of the transition region very 
challenging, as was noted in the original manuscript [20].

Human Labels of Diffraction Data

Figure 2 shows a summary of the human diffraction data 
labels. Each point represents a single composition and 
temperature, and the symbol shape represents the Shannon 
entropy of the human labels, or the amount of disagreement 
between the labels. The small circles represent points with 
perfect consensus, with large circles representing some 
disagreement, squares more disagreement and the triangles 
complete disagreement. The colored backgrounds are gener-
ated by the mode of the consensus class labels. The dashed 
lines represent the estimated phase boundaries between the 
monoclinic, multiphase and tetragonal phase regions.

Figure 2a presents the consensus phase maps for compo-
sition versus temperature for all five sets of human labels. 
One labeler assumed diffraction from a first-order phase 
transition could not exhibit the presence of multiple phases 
and thus created a set of labels quite distinct from the rest 
of the group. However, it is well known in the study of 
such transformations that both the high and low tempera-
ture phases can coexist over a range of temperatures, and 
therefore Fig. 2b removes this set of labels. In both panels, 
the dark blue range (monoclinic) has low Shannon entropy 
away from the phase boundary. In both panels, the Shannon 
entropy increases near the monoclinic to multiphase transi-
tion (dark blue to teal) with Fig. 2b showing a maximum 
entropy for samples on the boundary. Within the multiphase 
region Fig. 2a, there are few points with zero entropy; upon 
removing one set of human labels (Fig. 2b), a considerable 
zero entropy region is observed. The entropy increases again 
near the boundary between the multiphase and tetragonal 
phase regions (teal to yellow) and it is notable that the range 
of compositions and temperatures with high entropy is much 
larger than in the monoclinic to multiphase transition. The 
tetragonal range (away from the boundaries) shows perfect 
agreement (zero entropy) between labelers. Overall, the 
majority of the labels had an entropy of 0 (e.g., all labels 
were identical) when considering four out of the five sets 
of human labels.

In terms of the positioning of the boundaries, and withthe 
datasets with out the fifth set of labels are very similar as 
would be expected with a large 4/5 consensus. There are two 
notable exceptions. First, the monoclinic to two-phase trans-
formation at room temperature, where the addition of the 
5th set of labels moves the boundary to >10 at.% versus <8 
at.%. Second, although the general trend of the multiphase to 
tetragonal boundary is consistent, for low Nb concentrations 
is absolute placement varies by a few data points.

Focusing the discussion on Fig. 2b, for the lowest Nb 
concentrations, the expert labels agree up until the high-
est temperature measurement. As was expected, the larg-
est entropies are observed near the boundaries between the 
different phase regions. Interestingly, even in the absence 

Fig. 2  a consensus phase maps as a function of Nb concentration and 
temperature including all human labels. b human consensus labels 
with a single set of labels removed. Background represents the con-
sensus phase in each region as calculated using the mode of the con-
sensus labels: monoclinic (dark blue), mixed phase (teal) and tetrag-
onal (yellow). The symbol shape represents the amount of Shannon 
entropy (measure of disagreement) between labelers
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of peak splitting, the human labels for the transition from 
monoclinic to two-phase (Nb<8 at.%) were consistent. In 
total, the monoclinic to two-phase boundary accounted for 
10 of the 43 overall points with non-zero entropies and 5 
of those disagreements can be found at the room tempera-
ture boundary. In a notable departure from the established 
literature on the  VO2 transition, four of the general diffrac-
tion experts evenly split as to whether the transformation 
completed by 341 K for the lowest Nb content sample. This 
is attributable to difficulties in distinguishing background 
and diffuse scattering effects from the presence of a small 
volume fraction of a residual phase.

ML Labels of Diffraction Data

Figure 3 presents the Shannon entropy and phase classifica-
tion results performed on the four ML (spectral clustering) 
results. All four sets of labels clearly identify the monoclinic 
phase of  VO2. The ML consensus monoclinic (dark blue) to 
mixed phase (teal) boundary of the four models closely mir-
rors that of the human experts, especially when accounting 
for the human label entropy. The ML consensus boundary 
between the two-phase region (teal) and the tetragonal (yel-
low) phase is located above 20 at.% Nb at room tempera-
ture. In terms of the label entropy, the models largely agree 
in the monoclinic range; otherwise, for most other points, 
the labels disagreed with one another. There are two other 
regions of agreement, below 313 K between 10 at.% Nb and 
17 at.% Nb and the top right corner of the diagram.

It is notable that none of the four models detected the full 
monoclinic to two-phase to tetragonal phase transformation 
for any sample, particularly those with low Nb content. As 
was the case for the human labels, the onset of the mono-
clinic to multiphase transformation for the sample with the 

least Nb content was a source of labeling entropy for the 
ML labeled sets. A key differentiation between the ML and 
human labeling was that for the ML labels the maximum 
peak intensity drove the cluster assignments rather than the 
shape of the peak. Conversely, the majority of human label-
ers focused more on peak shape (either by eye or through 
fitting) in their labeling. In fact, no set of ML labels matched 
the human labels qualitatively.

Method for Comparing Model Effectiveness

Key to enabling more automated ML analysis of experi-
ments is to be able to benchmark the ML labels against the 
human consensus and variance. This allows for an equita-
ble comparison where models are not overly penalized for 
“incorrect” predictions where experts disagree. In order to 
quantitatively compare labeling by ML to the consensus 
of the human experts, we calculated a raw and confidence-
weighted accuracy score for each ML technique considered 
here. We evaluated the scores for all samples with compo-
sition<=20 at.% Nb. If the score is 1, then the ML label 
is consistent with a zero-entropy (i.e., unanimous) human 
consensus; a score of 0 indicates that the ML disagrees with 
a zero-entropy human consensus. If there was disagreement 
about a label (non-zero entropy) then the score is down-
weighted such that `weight=1—H(x) /  Huniform`, where H(x) 
is the Shannon entropy of the human label distribution for 
the instance and  Huniform is the Shannon entropy for a uni-
form distribution.

In order to generate an overall view of the effectiveness 
of each ML model as measured against the human labels, 
the score for each model was summed for all compositions 
and temperatures and normalized to the number of spec-
tra (Fig. 4). For the sake of comparison, an unweighted 
accuracy is also included. The dashed line represents the 

Fig. 3  Shannon entropy and phase attribution results performed on 
the four spectral clustering results. Background represents the con-
sensus phase in each region: monoclinic (dark blue), mixed phase 
(teal) and tetragonal (yellow). The symbol shape represents the 
amount of Shannon entropy (measure of disagreement) between 
labelers

Fig. 4  Plot of the accuracy and SE-weighted accuracy vs all ML tech-
niques generated within this study. The dashed line represents the 
maximum possible score given the variance in the expert labels
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maximum possible score, given the uncertainties from the 
human labels. Although in this instance, the relative perfor-
mance of the techniques is preserved, and the overall score 
is reduced so that 3 out of the 4 techniques have weighted 
accuracies of less than 50%.

As discussed in the methods section, although the ML 
practitioners were given the freedom to evaluate Nb con-
centrations between 20 at.% and 25 at.%, the actual com-
parisons were performed on the composition region of 
maximal overlap (up to 20 at.%). When the results of the 
models were thus confined, VAE spectral clustering did 
have a slightly better overall score. However, we found that 
the quality of the cluster assignments from each of these 
algorithms is sensitive to the composition threshold and 
will discuss this in greater detail in a subsequent paper.

Conclusions and Open Materials Data 
Science Challenge

Materials scientists are increasingly using ML/AI in their 
scientific workflows; however, such studies are conducted 
using idealized datasets without any attempt to capture 
differences in data interpretation between individuals. 
Here, we show that even for relatively simple analysis 
tasks, labeling phases from diffraction data, there can be 
substantial variance between experts and ML/AI systems.

We demonstrate that, for a classification task, the Shan-
non Entropy can used to provide confidence assessments 
on multiple label assignments, obtained either from a panel 
of scientists or from a suite of automatic cluster analysis 
algorithms. We use these tools to show that, as expected, 
human experts disagree the most along the boundaries 
when a new phase appears, or an old phase vanishes. 
We also show that the currently considered group of ML 
models can correctly label the “easy” problem of looking 
for the transformation from monoclinic to multiphase but 
were not able to identify the more nuanced multiphase to 
tetragonal transition. Finally, we show that using these 
tools one can quantify the effective performance of a ML 
model when measured against the community consensus. 
Effectively this allows (1) ML models to be optimized in 
a manner that prioritizes data points with high consensus 
versus data points with large variance and (2) an even foot-
ing method of comparing ML models in light of expert 
uncertainty.

The data from this manuscript including the raw diffrac-
tion patterns as a function of composition and temperature, 
the anonymized human and ML labels and the human and 
ML consensus labels are made available at Data.gov. The 
interested reader is encouraged to send to the corresponding 
author of this study human, ML and human-ML generated 

labels for this dataset. New human labels and ML labels will 
be added to the consensus dataset which will be updated 
periodically. A condition for incorporation of new ML 
models will be the comparability of the new model’s per-
formance with a series of additional diffraction datasets on 
similar materials systems. This will help avoid the issue of 
overfitting to the available dataset. The highest model scores 
will be maintained in a separate file (the user can choose if 
they want to be anonymized).

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s40192- 021- 00213-8.
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