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materials data collected during
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experimental and data workflow from the
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practices currently used for materials

data at NREL.
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THE BIGGER PICTURE For machine learning to make significant contributions to a scientific domain, algo-
rithms must ingest and learn from high-quality, large-volume datasets. The Research Data Infrastructure
(RDI) that feeds the High-Throughput Experimental Materials Database (HTEM-DB, htem.nrel.gov) provides
such a dataset from existing experimental data streams at the National Renewable Energy Laboratory
(NREL). The described methods for curating experimental data can be applied to other materials research
laboratory settings, paving the way for increased application of machine learning to materials science. In
turn, the resulting newmaterials and new knowledgewill benefit the society by advancing new technologies
in energy, fuels, computing, security, and other important areas.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
The High-Throughput Experimental Materials Database (HTEM-DB, htem.nrel.gov) is a repository of inor-
ganic thin-film materials data collected during combinatorial experiments at the National Renewable Energy
Laboratory (NREL). This data asset is enabled by NREL’s Research Data Infrastructure (RDI), a set of custom
data tools that collect, process, and store experimental data and metadata. Here, we describe the experi-
mental data flow from the RDI to the HTEM-DB to illustrate the strategies and best practices currently
used for materials data at NREL. Integration of the data tools with experimental instruments establishes a
data communication pipeline between experimental researchers and data scientists. This work motivates
the creation of similar workflows at other institutions to aggregate valuable data and increase their usefulness
for future machine learning studies. In turn, such data-driven studies can greatly accelerate the pace of dis-
covery and design in the materials science domain.
INTRODUCTION

The High-Throughput Experimental Materials Database (HTEM-

DB, htem.nrel.gov)1 enables the discovery of new materials with

useful properties by providing large amounts of high-quality

experimental data to the public. The HTEM-DB is one of several

commonly used materials databases, with an important distinc-

tion that it contains experimental data rather than computational

predictions.2–6 The dataset housed in the HTEM-DB is continu-

ously expanding due to ongoing experiments at the National

Renewable Energy Laboratory (NREL). Other related databases

contain useful experimental observations7,8 that are typically
This is an open access article under the CC BY-N
focused on a specific collection of results (e.g., crystal struc-

tures) from published literature. In HTEM-DB, the complete

experimental dataset is made available, including material syn-

thesis conditions, chemical composition, structure, and proper-

ties. Similar databases to the HTEM-DB exist for materials sci-

ence9 as well as a few other scientific domains,10 while the

advantages and disadvantages of such resources have been

discussed in other fields.11

HTEM-DB is enabled by the NREL’s Research Data Infrastruc-

ture (RDI), a modern data management system comparable

with a laboratory information management system (LIMS). The

RDI is integrated into the laboratory workflow that catalogs
Patterns 2, 100373, December 10, 2021 ª 2021 The Authors. 1
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Figure 1. Data management needs for experimental materials research

The experimental (red) and data (green) research workflows have (right) unique infrastructure and usability requirements, but (left) overlapping data inflow and

outflow needs. These research workflows are combined within a common RDI and HTEM-DB at NREL, in which the existing experimental data stream is

leveraged to develop new materials science insights through machine learning.
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experimental data from inorganic thin-filmmaterials experiments

at NREL. For the past decade, the RDI has been collecting data

from high-throughput experiments (HTEs) across a broad range

of thin-film solid-state inorganic materials for various applica-

tions, and those data now populate the HTEM-DB. Collecting

the results of experimental material synthesis and characteriza-

tion creates a rich data source for machine learning studies.

While the RDI and HTEM-DB workflows discussed here are

based in custom data tools, examples of using both custom12

and off-the-shelf data tools13 can be found in the material sci-

ence domain.

Here, we present the RDI that has enabled the HTEM-DB at

NREL. This article describes the structural pillars of the RDI,

such as raw data collection, metadata collection, data extrac-

tion, transformation, loading, and data access, and discusses

best practices for future data infrastructure projects of similar

scope. After documenting these structural pillars, we discuss

the impact of the RDI workflow and the lessons learned during

its implementation. While the RDI example described here

focuses on high-throughput materials science studies, it is

more broadly relevant to any experimental materials science

laboratory working to improve their data-related efforts. As

such, this article can serve as a blueprint for the future research

data infrastructure developments that would increase integra-

tion of experimental and data research in the materials science

domain.
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RESULTS

Overview
To motivate a data infrastructure that collects and augments an

experimental data stream for subsequent use by advanced algo-

rithms, first we analyze the needs of experimental and data re-

searchers with respect to their typical workflows, as shown in

the example of materials science domain in Figure 1. This anal-

ysis identifies both overlapping and unique data infrastructure

requirements for high-throughput experimental (HTE) materials

researchers and corresponding data researchers. The HTE ma-

terials research community begins a study by forming a hypoth-

esis and testing it by experimentation. These data are processed

and analyzed, and the results are reported through a peer-re-

viewed publication on relations between material synthesis, pro-

cessing, composition, structure, properties, and performance.

The materials-data researchers begin a study by identifying a

set of relevant data. The dataset is then collected and sorted

so that it can be filtered and analyzed for relations between the

data, which are the reported results.

Each of these two workflows (experimental and data) has its

own requirements, but they can be integrated into a single work-

flow if the data needs are generalized as inflow, infrastructure,

usability, or outflow, as shown in Figure 1. The experimental

workflow requires tools for collecting, sorting, and storing newly

generated data, whereas the data workflow needs easy access



Figure 2. Experimental and data workflows for high-throughput materials research

The workflow starts with (A) experiment design, then material samples are (B) produced, (C) treated, (D) measured, and (E) stored in archives. The measurement

data are (F) collected for (G) analysis and presented in (H) a publication, where they inform subsequent experiments. At each step, data tools were developed and

implemented for the collection of metadata (green) and measurement (purple) data, automated file management (red), and access (blue).
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to the stored data. Furthermore, the experimental researchers

need tools to analyze and learn from the data, while the data re-

searchers need large, diverse, high-quality datasets. However,

access to previously obtained data and a repository for new

data are required for both experimental and data workflows, so

there is a strong overlap in their inputs and outputs. These over-

lapping requirements motivated the creation of the RDI that col-

lects, processes, and stores experimental data andmetadata, as

well as the HTEM-DB, which provides both a repository for

experimental data and a source for the data-driven studies.

The integrated experimental and data workflow that is utilized

by numerous researchers in materials discovery area at NREL is

illustrated in Figure 2. On the experimental side, NREL pos-

sesses a wealth of HTE capabilities and expertise for thin-film

materials research (Figures 2A–2E). This experimental research

involves depositing and characterizing thin films, often on 50 3

50-mm (23 200) square substrates with a 43 11 samplemapping

grid, which are common across multiple combinatorial thin-film

deposition chambers and spatially resolved characterization

instruments at NREL. This experimental workflow at NREL

has been benchmarked against other laboratories.14,15 Other

publications demonstrate the range of materials chemistries
(e.g., oxides,16 nitrides,17 chalcogenides,18 Li-containing mate-

rials,19 intermetallics)20 and properties (e.g., optoelectronic,21

electronic,22 piezoelectric,23 photoelectrochemical,24 thermo-

chemical)25 to which these HTE methods have been applied.

Each experimental investigation generates large, comprehen-

sive datasets (Figures 2A–2E) that are delivered to the HTEM-DB

through the RDI described in this paper (Figures 2F–2H). The RDI

was first envisioned almost two decades ago in 2003,26 then

first described in 2014,27 and briefly summarized in 2018.1 As

a part of the RDI, we also created (2010) and released

(2019) COMBIgor (https://www.combigor.com/),28an open-

source data-analysis package for high-throughput materials-

data loading, aggregation, and visualization in combinatorial ma-

terials science. Now, after a decade of development, COMBIgor

is an integral and useful part of the RDI at NREL. In addition, an

early version of COMBIgor has served as a blueprint of parts of

the RDI described in this manuscript, such as its extract, trans-

form, and load (ETL) scripts, and the visualization functionality

of HTEM-DB.

Another important component of the RDI is the NREL

Research Data Network and Data Warehouse (DW) (Figure 2).

The DW was first established at NREL in 2010, to manage data
Patterns 2, 100373, December 10, 2021 3
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Figure 3. Data collection scheme for high-throughput materials research

(A) Digital data, or raw data files, are collected by the RDI harvesters into the DW, while (B) the metadata are collected by the LMC. Digital data and metadata are

collected during three steps of the experimental process: (C) sample library growth, (D) sample post-processing, and (E) materials measurement. These data are

combined and entered into the HTEM-DB as a complete sample record. Detailed images of the customwebforms are presented in the supplemental information.
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collected from laboratory computers that control experimental

instruments. The DW automatically collects data from these

tools and makes the files accessible to researchers and to other

data tools via the Research Data Network (RDN). For example,

the HTEM-DB is populated with measurement data contained

in specific high-throughput measurement folders in the DW

that are identified by standardized file-naming conventions. Crit-

ical metadata from synthesis, processing, and measurement

steps are also collected using Laboratory Metadata Collector

(LMC) and added to the DW or directly to HTEM-DB, providing

experimental context for the measurement results. The data

from these files are extracted, transformed, and loaded into

the HTEM-DB, which stores processed data for analysis, publi-

cation, and data science purposes (Figure 2). The integration

of this data workflow was made possible by the RDI that is

detailed next.

Components
The individual components of the RDI that facilitate the data

workflow presented in Figure 2 form a set of interconnected,

custom data tools. This includes tools for data collection (data

harvesters, and LMC), data processing (ETL), and storage and

access (DW and HTEM-DB). Brief descriptions of each of these

data tools are provided below, and additional details can be

found in the supplemental information.

Data warehouse

Digital data are the primary source of materials data within this

integrated workflow (Figure 2). The software harvests and stores

all the digital files that are generated during materials growth and

characterization processes (Figures 3 and 4). For this purpose,

the harvesting software monitors activity on the instrument com-

puters and automatically identifies target files as they are

created or updated. All relevant files on the instrument com-

puters are copied into the data warehouse (DW) archives and

processed into the database as necessary.26 To keep the sensi-

tive research instrumentation segregated from the normal NREL

network activity, the computers are connected to the data

harvester and archives via a firewall-isolated, specialized sub-

network, called the RDN. The DW currently houses nearly 4
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million files harvested from more than 70 instruments across

14 laboratories in four buildings on the NREL campus. This illus-

trates that the RDI described here is designed for a wide range of

experimental material science workflows beyond combinatorial

thin-film deposition and spatially resolved characterization.

The DW consists of a back-end relational database

(PostgreSQL) and a Qumulo file system housed in the NREL

Computational Sciences Data Center. The RDI codebase is built

as a series of modules and libraries in C++ and bash scripts but

is architected to be modular and allow for easy replacement.26

The RDI does not require any software to be installed on instru-

ment computers, which is a significant advantage of this architec-

ture. As a result, there are no specific requirements for the individ-

ual instrument computers or file types, accommodating a wide

range of computer operating systems and ages, typical of an

experimental laboratory setting. The DW facilitates easy access

to the resulting data files through a custom-built Web application

hosted on the internal NREL network, where the aggregated data

files are easily and securely accessed by researchers. Thus, the

DW serves as both the initial repository and the access gateway

to experimental data generated at NREL. More details about the

DW are presented in supplemental information (Figure S1).

Laboratory metadata collector

Metadata is one of the most critical types of data in the inte-

grated workflow (Figure 2) because it gives context to the data

files collected in the DW. This data stream, although of high

importance, is difficult to capture because it requires interaction

and input from humans (experimentalists). To simplify metadata

collection, the laboratory metadata collector (LMC) was initially

prototyped in Python and now has been developed as a Web

application (Figures 3 and 4). The LMC includes custom web-

forms in which users enter and submit sample record information

upon completion of an experiment. Each record in the LMCplays

a role of a detailed, digital laboratory notebook entry, giving re-

searchers and algorithms access to the experimental variables

of interest and making them easy to associate to measurement

data, stored alongside metadata in both the DW and HTEM-DB.

The LMC is composed of a front-end, single-page Web

application written in JavaScript and a back-end application



Figure 4. Data management scheme for high-throughput materials research

For experimental researchers, the raw files can be obtained from the DW via (A) network access and can be easily loaded for (B) flexible analysis of the data in

COMBIgor. Curated sample records can be searched, filtered, visualized, and downloaded through (C) HTEM-DB Web access. To populate the HTEM-DB with

sample records, raw measurement files from the DW are processed through a set of custom ETL scripts. The data are (D) extracted from files in the DW, (E)

transformed into useable data, and (F) loaded and post-processed to the corresponding sample library entries. Details and screenshots are presented in the

supplemental information.

ll
OPEN ACCESSDescriptor
programming interface (API) written in Node.js. The bulk of the

logic is in the front-end Web application, which runs in any mod-

ern Web browser. It can be accessed from the NREL network by

researchers’ laptops and by in-laboratory computers. The appli-

cation provides model logic for building webforms and con-

ducting form validation. The dynamic view of the webform is

adjusted in response to user-entered values and the user’s

display settings. It presents a preview of the entry upon submis-

sion for the user to verify, providing the option for the user to

either save the entry or return to editing. The Web front end

also provides a searchable interface for finding previous entries.

Thus, in the case of ametadata entry error, it can be corrected by

opening the erroneous entry, correcting the data, and saving it

with the same sample name but a different time stamp. Entry

submission and search features are enabled through a back-

end API that interacts with the DW. The API simply adds the sub-

mitted JSON data to the DW and queries and retrieves past

entries.

The LMC webforms collect information from the experimen-

talist during deposition, post-processing, and measurement of

sample libraries. This information is agglomerated in the

HTEM-DB for each sample, greatly improving the value of the

associated measurement data. Providing additional benefit to

the user, COMBIgor plugins port this LMC-generated informa-

tion directly into the user’s Igor Pro experiment via direct

JSON file download/import or through the HTEM API (Figures

4A–4C). Easy access to complete experimental records in

COMBIgor motivates researchers to participate in metadata re-

porting through the LMC. As such, the LMC supports the data

needs of both the experimental and data science researchers.

For the experimentalist, it provides a more efficient, accurate,

and accessible record of experimental variables for experimental

analysis, compared with typical handwritten laboratory note-

books. For the data science researchers, the LMC offers reliable

and complete sample records for individual material samples,
which increases the value of any associated data and the overall

usability of the entire HTEM-DB in larger data studies. More de-

tails about the LMC are presented in supplemental information

(Figure S2).

Extract, transform, load

Custom extract, transform, and load (ETL) scripts port raw data

from files in the DW into the HTEM-DB (Figures 4D–4F). First, (1)

the relevant folders of high-throughput data are copied from the

DW and filed into the HTEM-DB repository, based on file name

conventions, using a Python script. Information extracted from

the raw files, including both open-source (e.g., ASCII, HDF)

and reverse-engineered proprietary file formats (e.g., various

.raw files), is placed into tables that correspond to the standard

4 3 11 library mapping grid from HTE studies at NREL, or other

custom grids (e.g., 176-point grid used by National Institute of

Standards and Technology).14 Next, (2) the data extracted

from the files are transformed from original (sometimes proprie-

tary) to final format. The extraction method varies depending on

the specific file type and, in some cases, utilizes additional Py-

thon libraries or programming languages (e.g., Ruby, C, R).

Finally, (3) individual pieces of new data for a given sample are

identified and loaded to the database. In this way, these data

are correlated to other descriptive metadata pertaining to the

same sample. These custom ETL scripts have been designed

in a similar way to our open-source data-analysis packageCOM-

BIgor,28 so the interested reader is referred to its public GitHub

repository (https://github.com/NREL/CombIgor) for full scripts

(e.g., see ‘‘Instruments’’ subfolder) and test datasets (e.g., see

‘‘Example Files’’ subfolder).

Collectively, the custom ETL process produces a continuous

flow of new information to the HTEM-DB and supports both

experimental and data science researchers. These scripts, writ-

ten primarily in Python, run on the NREL high-performance

computing system, and are automatically executed daily. As

part of the ETL workflow, certain data types may be combined
Patterns 2, 100373, December 10, 2021 5
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to generate additional, useful data types. For example, sheet

resistance and thickness may be combined to calculate resistiv-

ity, or optical transmission, reflection, and thickness may be

combined to calculate the absorption spectrum and to deter-

mine the optical bandgap.29 Thus, this ETL infrastructure funnels

and correlates datasets from raw files in the DW into structured

entries in the HTEM-DB that are easily accessed by experimental

and data-focused researchers. More details about the custom

implementation of the ETL process, including key lines of the

script and the screenshot of the code repository, are presented

in supplemental information (Figure S3).

HTEM-DB

The HTEM-DB, including its structure, content, and applications,

is detailed in a previous publication.1 Here, we present the

HTEM-DB in a level of detail similar to the other workflow com-

ponents in Figure 4 for completeness. The HTEM is a Post-

greSQL database that is a repository for the incoming data

from experimental workflows. It is housed in the same NREL

data center as the DW, LMC, and ETL scripts. HTEM-DB func-

tions as an access point for both experimental and data science

researchers, with two main points of access. Experimentalists

typically use the Web interface (https://htem.nrel.gov), which

provides the user with quick and effective sample search for

retrieval of sample and library information of all data types, which

can then be viewed using the built-in data visualization features.

Data scientists typically use the API (https://htem-api.nrel.gov/

api), which enables machine learning by providing algorithms

with programmatic access to the entire HTEM and is also used

to load experimental data into COMBIgor. Thus, the HTEM-DB

supports both experimental and data researchers by providing

tailored data inflow and outflow access and by providing fea-

tures that enhance the usability of the data that it contains.

Access to the data that flow through RDI provides researchers

with an opportunity to interact with themand learn from them. For

researchers conducting experimental studies, the RDI provides

improved efficiency and increased accuracy of experimental

research data handling. Easy access to aggregated data for sam-

ples of interest in ongoing research projects is achieved through

downloading files directly from the DW, loading library informa-

tion into COMBIgor directly from the HTEM-DB, or using data-

analysis tools built into the HTEM-DB Web interface for finding,

filtering, visualizing, and downloading sample records (see

‘‘Help’’ information at the Web page). For the data scientists,

the RDI provides a large dataset to investigate by machine

learning methods by enabling access to curated, structured,

and complete data records for a wide range of materials, which

is achieved through the HTEM API or Web page for the publicly

available data. This release of the data to the public on HTEM-

DB is made under a Creative Commons license (Attribution 4.0

International license) once the manuscript describing the data

is published, or a decision is made not to pursue the manuscript

publication. Access to some of theHTEMcontent, including spe-

cific chemical elements in a sample library, is restricted in the in-

terest of the stakeholders, including the public or private funding

sources that support specific research projects and demand

exclusive access to the resulting data.

The HTEM-DB is large and diverse (Figure 5). Due to a rich his-

tory of HTE materials studies conducted at NREL, the internal

version of the database has been populated with more than
6 Patterns 2, 100373, December 10, 2021
320,000 unique samples from more than 7,300 sample libraries

as of September 2020. Of the unique samples within the

HTEM-DB, more than half (174,000) have correlated character-

ization data. These samples cover a wide range of compositions,

with more than 33 elements quantified in samples with composi-

tion measurements. These characteristics are desirable for ma-

terials-data studies and are important factors if such studies are

to be realistic and useful. The HTEM-DB will continue to grow

due to ongoing experiments and continuing efforts to build addi-

tional data collection pathways, providing an ever-increasing po-

tential for useful knowledge extraction. Another interesting future

direction is connecting the HTEM DB1 with some of the compu-

tational material databases,2–6 for co-displaying experimental

and theoretical data for related database entries, or for joint

experimental/theoretical data analysis. More details about the

HTEM-DB are presented in a previous publication.1

DISCUSSION

The effort to develop the RDI at NREL has resulted in a more

valuable product than initially envisioned. By establishing various

RDI tools, integrating them together, and providing them to re-

searchers, a complete data workflow has been implemented

that supports the existing experimental research workflow while

curating valuable data for future use in machine learning studies.

These RDI tools are tailored to the specific experimental setting

at NREL (Figure 2) but are broadly designed to meet the needs

outlined in Figure 1. Thus, this RDI example should be applicable

to other materials science laboratory settings with a somewhat

standardized research workflow, like that shown in the example

of high-throughput materials research (Figure 3). The data tools

that form the RDI (Figure 4)—specifically the harvesters, DW,

the ETL process, the LMC, as well as the resulting HTEM-DB

(Figure 5)—are all critical to the success of the RDI. The hope

is that the designs and features of the data tools described

herewill serve as examples of best practices for other institutions

that require similar RDI for their own data workflows.

Historically, the RDI at NREL has been constructed from the

bottom up, with multiple contributions from many people over

the time span of more than a decade. For example, the initial

version of RDI has been prototyped as a part of a laboratory

design and construction project funded by the US Department

of Energy (DOE), and more recently supported by NREL internal

research data infrastructure funding. The resulting bottom-up

RDI products are functional, and can be used tomake a blueprint

for better RDI planning and construction in the future. In a similar

way, bottom-up design and construction of the HTEM-DB has

been an indirect outcome of addressing individual data chal-

lenges in a collaborative project between materials science

and data science. The resulting materials-data relations has

shown promise as a valuable contributor to science, and, as

such, encourages investments in this area to design and build

similar data workflows and databases at other institutions.

Ideally, it is our opinion that these types of RDI systems should

be engineered from the top down, leveraging the lessons learned

from the prior bottom-up efforts discussed above. Such next-

generation RDI built to collect, maintain, and access the data

should strike a fine balance between being simple, to encourage

contributions from individual researchers, and flexible/scalable,

https://htem.nrel.gov
https://htem-api.nrel.gov/api
https://htem-api.nrel.gov/api


Figure 5. HTEM-DB statistics

As of September 2020, the internal version of the database is (A) large, with over 300,000 unique samples on more than 7,000 libraries; (B) complete, with either

structure, composition, and/or property data for more than 170,000 samples; and (C) chemically diverse, shown as percentage of samples containing a given

element.

ll
OPEN ACCESSDescriptor
to meet the needs of future research directions. However, build-

ing a complete RDI from scratch would require a substantial up-

front financial investment in hardware, network installation, and

software development, as well as sustained investment in main-

tenance and improvement, both of which are not always easy to

obtain. This is further complicated by the fact that the modern

materials science laboratory is a complex and ever-changing

terrain where experimental equipment with all types of software,

hardware, age, and access is encountered. Thus, a functional

RDI for amodern materials science laboratory requires recruiting

and retaining skilled and dedicated personnel in material sci-

ence, data science, and software engineering, which is not al-

ways easy, especially in a small laboratory.

An interesting intermediate option between the historical bot-

tom-up and the idealistic top-down approaches discussed above

is the one where a general RDI framework is developed from the

top down at a large institution with significant resources dedi-

cated to this effort and then customized from the bottom up to

be most useful for each individual research laboratory. As a first

step toward a more generalizable RDI at NREL, we have imple-

mented and are currently testing an internal user authentication

scheme for HTEM-DB that may enable in the future direct data

contributions or corrections from internal users, rather than just

data harvesting from the measurement instruments. However,

opening up HTEM-DB for external contributions, as well as

increasing the open-source fraction of the RDI code beyond

COMBIgor, would in turn require further RDI developments, which

should be supported by corresponding external funding. A suc-

cessful prior example of such external data contribution can be

found in the MPContribs30 framework for the Materials Project3

externally funded by DOE, although with a primary focus on

computational rather than experimental data. Other emerging ex-

amples are the data hubs of several energy material networks

(EMNs) funded by DOE, based on easily deployed cloud technol-

ogy and open-source software frameworks.31

The most successful RDI components to prompt the materials

researcher engagement at NREL were built through tight collabo-

rativedesignefforts betweenmaterial researchers, data scientists,

and software engineers. The RDI constructed by software engi-

neers and presented here is useful to the experimentalist and, as

a result, has been widely adopted by the materials researchers

at NREL. New materials researchers that join HTE efforts at

NREL are encouraged to use the various components of the RDI,
including mining of the prior relevant data through HTEM-DB,

entering thesynthesis conditionsusingLMC,and remotelycollect-

ing the relevant files through the DW for COMBIgor analysis. The

motivation for continued usedof theRDI is providedbybothbene-

ficial functionality of theRDI components that acceleratematerials

research and by the recent increase in public data requirements of

funding agencies and journal publishers.

As more materials researchers use the RDI, the HTEM-DB

continues to collect, preserve, and provide materials data. In

turn, the large, curated set of samples synthesized, character-

ized, and captured by the RDI is primed and ready for exploration

by machine learning algorithms by the data scientists. To ensure

long-term success of this interaction between materials re-

searchers and data scientists, various software components of

the RDI have been documented in internal GitHub repositories

and inside of the scripts contained therein, and parts of the

RDI source code, such as COMBIgor, have been made publicly

available28 for other software engineers to modify and reuse.

This RDI and HTEM-DB are just one example of how the individ-

ual materials science and data science efforts at NREL provide

much greater value when combined to work together. Similar

systems brought online at other institutions, producing a broader

set of materials data to explore, would further increase the po-

tential of this materials-data relationship to advance science.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests should be directed to and will be fulfilled by

the lead contact, Andriy Zakutayev (andriy.zakutayev@nrel.gov).

Materials availability

This study did not generate new material samples.

Data and code availability

The data in HTEM-DB can be accessed at https://htem.nrel.gov/ (using Web

interface) and https://htem-api.nrel.gov/ (using API), as described in NREL

Data Catalog under DOI: 10.7799/1407128. The COMBIgor code is available

on GitHub at https://github.com/NREL/CombIgor and under DOI: 10.5281/

zenodo.5539029 Additional information about other parts of the RDI described

in this publication is available from the lead contact upon request.
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Patterns 2, 100373, December 10, 2021 7

mailto:andriy.zakutayev@nrel.gov
https://htem.nrel.gov/
https://htem-api.nrel.gov/
https://doi.org/10.7799/1407128
https://github.com/NREL/CombIgor
https://doi.org/10.5281/zenodo.5539029
https://doi.org/10.5281/zenodo.5539029
https://doi.org/10.1016/j.patter.2021.100373
https://doi.org/10.1016/j.patter.2021.100373


ll
OPEN ACCESS Descriptor
ACKNOWLEDGMENTS

This work was authored at the NREL, operated by Alliance for Sustainable En-

ergy, LLC, for the DOE under contract no. DE-AC36-08GO28308. Financial

support for the RDI operation and improvements, including LMC, is provided

by NREL indirect funding. Funding HTEM-DB development was provided by

NREL’s Laboratory Directed Research and Development (LDRD). HTEM

data curation efforts were funded by the DOE, Office of Science. DW prototyp-

ing was supported by the DOE, Energy Efficiency and Renewable Energy

(EERE). A portion of the research was performed using computational re-

sources sponsored by the DOE EERE and located at NREL.

AUTHOR CONTRIBUTIONS

Conceptualization, A.Z. and C.P.; software, R.W., M.S., N.W., C.P., D.E., M.E.,

and A.Z.; resources, C.P., K.M., J.P., and A.Z.; data curation, R.W., M.S., C.P.,

and A.Z.; writing, K.R.T., C.P., and A.Z.; visualization, K.R.T.; supervision,

K.M., C.P., and A.Z.; project administration, K.M, C.P., J.P., W.T., and A.Z.;

funding acquisition, J.P., K.M., C.P., W.T., and A.Z.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: June 23, 2021

Revised: August 13, 2021

Accepted: September 30, 2021

Published: December 10, 2021

REFERENCES

1. Zakutayev, A., Wunder, N., Schwarting, M., Perkins, J.D., White, R.,

Munch, K., Tumas, W., and Phillips, C. (2018). An open experimental data-

base for exploring inorganic materials. Sci. Data 5, 180053. https://doi.

org/10.1038/sdata.2018.53.

2. Stevanovic, V., Lany, S., Zhang, X., and Zunger, A. (2012). Correcting den-

sity functional theory for accurate predictions of compound enthalpies of

formation: fitted elemental-phase reference energies. Phys. Rev. B 85,

115104. https://doi.org/10.1103/PhysRevB.85.115104.

3. Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S.,

Cholia, S., Gunter, D., Skinner, D., Ceder, G., and Persson, K.A. (2013).

The Materials Project: a materials genome approach to accelerating ma-

terials innovation. APL Mater. 1, 011002. https://doi.org/10.1063/1.

4812323.

4. Curtarolo, S., Setyawan, W., Hart, G.L.W., Jahnatek, M., Chepulskii, R.V.,

Taylor, R.H., Wang, S., Xue, J., Yang, K., Levy, O., et al. (2012). AFLOW: an

automatic framework for high-throughput materials discovery. Comput.

Mater. Sci. 58, 218–226. https://doi.org/10.1016/j.commatsci.2012.

02.005.

5. Saal, J.E., Kirklin, S., Aykol, M., Meredig, B., and Wolverton, C. (2013).

Materials design and discovery with high-throughput density functional

theory: the Open Quantum Materials Database (OQMD). JOM 65, 1501–

1509. http://doi:10.1007/s11837-013-0755-4.

6. Haastrup, S., Strange, M., Pandey, M., Deilmann, T., Schmidt, P.S.,

Hinsche, N.F., Gjerding, M.N., Torelli, D., Larsen, P.M., Riis-Jensen,

A.C., et al. (2008). The Computational 2D Materials Database: high-

throughput modeling and discovery of atomically thin crystals. 2D

Mater. 5, 042002. https://doi.org/10.1088/2053-1583/aacfc1.

7. Mariette, H. (2004). The inorganic crystal structure database (ICSD) - pre-

sent and future. Crystallogr. Rev. 10, 17–22. https://doi.org/10.1080/

08893110410001664882.

8. Xu, Y., Yamazaki, M., and Villars, P. (2011). Inorganic materials database

for exploring the nature of material. Jpn. J. Appl. Phys. 50, 11. 11RH02.

https://doi.org/10.1143/jjap.50.11rh02.

9. Stein, H.S., Soedarmadji, E., Newhouse, P.F., Guevarra, D., and Gregoire,

J.M. (2019). Synthesis, optical imaging, and absorption spectroscopy data
8 Patterns 2, 100373, December 10, 2021
for 179072 metal oxides. Sci. Data 6, 1–5. https://doi.org/10.1038/

s41597-019-0019-4.

10. Morrell, W.C., Birkel, G.W., Forrer, M., Lopez, T., Backman, T.W.H.,

Dussault, M., Petzold, C.J., Baidoo, E.E.K., Costello, Z., Ando, D., et al.

(2017). The experiment data depot: a web-based software tool for biolog-

ical experimental data storage, sharing, and visualization. ACS Synth. Biol.

6, 2248–2259. https://doi.org/10.1021/acssynbio.7b00204.

11. Williams, A.J., Ekins, S., and Tkachenko, V. (2012). Towards a gold stan-

dard: regarding quality in public domain chemistry databases and ap-

proaches to improving the situation. Drug Discov. Today 17, 685–701.

https://doi.org/10.1016/j.drudis.2012.02.013.

12. Statt, M., Rohr, B.A., Brown, K.S., Guevarra, D., Hummelshøj, J.S., Hung,

L., Gregoire, J., and Suram, S. (2021). ESAMP: event-sourced architecture

for materials provenancemanagement and application to acceleratedma-

terials discovery. https://doi.org/10.26434/chemrxiv.14583258.v1.

13. Banko, L., and Ludwig, A. (2020). Fast-track to research datamanagement

in experimental material science–setting the ground for research group

level materials digitalization. ACS Comb. Sci. 22, 401–409. https://doi.

org/10.1021/acscombsci.0c00057.

14. Hattrick-Simpers, J.R., Zakutayev, A., Barron, S.C., Trautt, Z.T., Nguyen,

N., Choudhary, K., DeCost, B., Phillips, C., Kusne, A.G., Yi, F., et al. (2019).

An Inter-Laboratory Study of Zn–Sn–Ti–O thin films using high-throughput

experimental methods. ACS Comb. Sci. 21, 350–361. https://doi.org/10.

1021/acscombsci.8b00158.

15. Hattrick-Simpers, J.R., DeCost, B., Kusne, A.G., Joress, H., Wong-Ng,W.,

Kaiser, D.L., Zakutayev, A., Phillips, C., Sun, S., Thapa, J., et al. (2021). An

open combinatorial diffraction dataset including consensus human and

machine learning labels with quantified uncertainty for training new ma-

chine learning models. Integrat. Mater. Manufact. Innovation 10, 311.

https://doi.org/10.1007/s40192-021-00213-8.

16. Bikowski, A., Holder, A., Peng, H., Siol, S., Norman, A., Lany, S., and

Zakutayev, A. (2016). Synthesis and characterization of (Sn, Zn) O alloys.

Chem. Mater. 28, 7765–7772. https://doi.org/10.1021/acs.chemmater.

6b02968.

17. Bauers, S.R., Mangum, J., Harvey, S.P., Perkins, J.D., Gorman, B., and

Zakutayev, A. (2020). Epitaxial growth of rock salt MgZrN2 semiconduc-

tors on MgO and GaN. Appl. Phys. Lett. 116, 102102. https://doi.org/10.

1063/1.5140469.

18. Siol, S., Holder, A., Steffes, J., Schelhas, L.T., Stone, K.H., Garten, L.,

Perkins, J.D., Parilla, P.A., Toney, M.F., Huey, B.D., et al. (2018).

Negative-pressure polymorphs made by heterostructural alloying. Sci.

Adv. 4, EAAQ1442. https://doi.org/10.1126/sciadv.aaq1442.

19. Xu, Y., Wood, K., Coyle, J., Engtrakul, C., Teeter, G., Stoldt, C., Burrell, A.,

and Zakutayev, A. (2019). Chemistry of electrolyte reduction on lithium sili-

cide. J. Phys. Chem. C 123, 13219–13224. https://doi.org/10.1021/acs.

jpcc.9b02611.

20. Zakutayev, A., Zhang, X., Nagaraja, A., Yu, L., Lany, S., Mason, T.O.,

Ginley, D.S., and Zunger, A. (2013). Theoretical prediction and experi-

mental realization of new stable inorganic materials using the inverse

design approach. J. Am. Chem. Soc. 135, 10048–10054. https://doi.org/

10.1021/ja311599g.

21. Welch, A.W., Baranowski, L.L., Peng, H., Hempel, H., Eichberger, R.,

Unold, T., Lany, S., Wolden, C., and Zakutayev, A. (2017). Trade-offs in

thin film solar cells with layered chalcostibite photovoltaic absorbers.

Adv. Energy Mater. 7, 1601935. https://doi.org/10.1002/aenm.20160193.

22. Roberts, D.M., Bardgett, D., Gorman, B.P., Perkins, J.D., Zakutayev, A.,

and Bauers, S.R. (2020). Synthesis of tunable SnS-TaS2 nanoscale super-

lattices. Nano Lett. 20, 7059–7067. https://doi.org/10.1021/acs.nanolett.

0c02115.

23. Talley, K.R., Millican, S.L., Mangum, J., Siol, S., Musgrave, C.B., Gorman,

B., Holder, A.M., Zakutayev, A., and Brennecka, G.L. (2018). Implications

of heterostructural alloying for enhanced piezoelectric performance of

(Al, Sc) N. Phys. Rev. Mater. 2, 063802. https://doi.org/10.1103/

PhysRevMaterials.2.063802.

https://doi.org/10.1038/sdata.2018.53
https://doi.org/10.1038/sdata.2018.53
https://doi.org/10.1103/PhysRevB.85.115104
https://doi.org/10.1063/1.4812323
https://doi.org/10.1063/1.4812323
https://doi.org/10.1016/j.commatsci.2012.02.005
https://doi.org/10.1016/j.commatsci.2012.02.005
https://doi.org/10.1007/s11837-013-0755-4
https://doi.org/10.1088/2053-1583/aacfc1
https://doi.org/10.1080/08893110410001664882
https://doi.org/10.1080/08893110410001664882
https://doi.org/10.1143/jjap.50.11rh02
https://doi.org/10.1038/s41597-019-0019-4
https://doi.org/10.1038/s41597-019-0019-4
https://doi.org/10.1021/acssynbio.7b00204
https://doi.org/10.1016/j.drudis.2012.02.013
https://doi.org/10.26434/chemrxiv.14583258.v1
https://doi.org/10.1021/acscombsci.0c00057
https://doi.org/10.1021/acscombsci.0c00057
https://doi.org/10.1021/acscombsci.8b00158
https://doi.org/10.1021/acscombsci.8b00158
https://doi.org/10.1007/s40192-021-00213-8
https://doi.org/10.1021/acs.chemmater.6b02968
https://doi.org/10.1021/acs.chemmater.6b02968
https://doi.org/10.1063/1.5140469
https://doi.org/10.1063/1.5140469
https://doi.org/10.1126/sciadv.aaq1442
https://doi.org/10.1021/acs.jpcc.9b02611
https://doi.org/10.1021/acs.jpcc.9b02611
https://doi.org/10.1021/ja311599g
https://doi.org/10.1021/ja311599g
https://doi.org/10.1002/aenm.20160193
https://doi.org/10.1021/acs.nanolett.0c02115
https://doi.org/10.1021/acs.nanolett.0c02115
https://doi.org/10.1103/PhysRevMaterials.2.063802
https://doi.org/10.1103/PhysRevMaterials.2.063802


ll
OPEN ACCESSDescriptor
24. Peng, H., Ndione, P.F., Ginley, D.S., Zakutayev, A., and Lany, S. (2015).

Design of semiconducting tetrahedral Mn1�xZnxO alloys and their applica-

tion to solar water splitting. Phys. Rev. X 5, 021016. https://doi.org/10.

1103/PhysRevX.5.021016.

25. Heo, S.J., Sanders, M., O’Hayre, R.P., and Zakutayev, A. (2021). Double-

site substitution of Ce into (Ba, Sr)MnO3 perovskites for solar thermo-

chemical hydrogen production. ACS Energy Lett. 2021, 3037–3043.

https://doi.org/10.1021/acsenergylett.1c01214.

26. Nelson, B., Friedman, D., Geisz, J., Albin, D., Benner, J., and Wang, Q.

(2003). To data management and beyond. for photovoltaic applications.

MRS Online Proc. Libr. 804, 54–59. https://doi.org/10.1557/PROC-804-

JJ11.3.

27. White, R.R., and Munch, K. (2014). Handling large and complex data in a

photovoltaic research institution using a custom laboratory information

management system. MRS Online Proc. Libr. 1104, 1–12. https://doi.

org/10.1557/opl.2014.31.

28. Talley, K.R., Bauers, S.R., Melamed, C.L., Papac, M.C., Heinselman, K.,

Khan, I., Roberts, D.M., Jacobson, V., Mis, A., Brennecka, G.L., et al.
(2019). COMBIgor: data analysis package for combinatorial materials sci-

ence. ACS Comb. Sci. 21, 537–547. https://doi.org/10.1021/acscombsci.

9b00077.

29. Schwarting, M., Siol, S., Talley, K., Zakutayev, A., and Phillips, C. (2017).

Automated algorithms for band gap analysis from optical absorption

spectra. Mater. Discov. 10, 43–52. https://doi.org/10.1016/j.md.2018.

04.003.

30. Huck, P., Gunter, D., Cholia, S., Winston, D., N’Diaye, A.T., and Persson,

K. (2016). User applications driven by the community contribution frame-

work MPContribs in the materials project. Concurrency Comput. Pract.

Exp. 28, 1982–1993. https://doi.org/10.1002/cpe.3698.

31. White, R.R., Munch, K., Wunder, N., Guba, N., Sivaraman, C., Van

Allsburg, K.M., Dinh, H., and Pailing, C. (2021). Energy material network

data hubs: software platforms for advancing collaborative energy mate-

rials research. Int. J. Adv. Comput. Sci. Appl. 12. https://doi.org/10.

14569/IJACSA.2021.0120677.
Patterns 2, 100373, December 10, 2021 9

https://doi.org/10.1103/PhysRevX.5.021016
https://doi.org/10.1103/PhysRevX.5.021016
https://doi.org/10.1021/acsenergylett.1c01214
https://doi.org/10.1557/PROC-804-JJ11.3
https://doi.org/10.1557/PROC-804-JJ11.3
https://doi.org/10.1557/opl.2014.31
https://doi.org/10.1557/opl.2014.31
https://doi.org/10.1021/acscombsci.9b00077
https://doi.org/10.1021/acscombsci.9b00077
https://doi.org/10.1016/j.md.2018.04.003
https://doi.org/10.1016/j.md.2018.04.003
https://doi.org/10.1002/cpe.3698
https://doi.org/10.14569/IJACSA.2021.0120677
https://doi.org/10.14569/IJACSA.2021.0120677

	Research data infrastructure for high-throughput experimental materials science
	Introduction
	Results
	Overview
	Components
	Data warehouse
	Laboratory metadata collector
	Extract, transform, load
	HTEM-DB


	Discussion
	Experimental procedures
	Resource availability
	Lead contact
	Materials availability
	Data and code availability


	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References


