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Abstract

Most of the existing traffic simulation packages require significant calibration work to be able to reflect reality. To evaluate
special operations including emerging technologies, a microscopic simulation that tracks detailed interactions of all the ele-
ments of the traffic systems is usually needed. This type of simulation is usually computationally demanding. This work devel-
oped an Airport Shuttle Planning and Improved Routing Event-driven Simulation (ASPIRES) package to simulate and evaluate
current, potential, and future airport shuttle operations. The simulation was driven by data and thus did not require much
calibration effort. The discrete-event simulation nature of ASPIRES makes the simulation computationally efficient. Simulating
| day of shuttle operations takes less than 2s. The study site of this work is the Dallas/Fort Worth International Airport in
the U.S. The shuttle service that connects the five terminals of the airport and the rental car center was studied. Travel times,
dwell times, and passenger arrivals were simulated using empirical distributions derived mainly from real data to capture the
stochastic nature of the rental car center shuttle bus operations. Data on bus miles traveled, bus energy consumption, pas-
senger wait times, and passengers left behind at stops were collected to study the trade-off between energy use and passen-
ger experience. Electric bus and on-demand bus operations were also included. The simulation outputs can show passengers
statistics at terminals, shuttles statistics, and charging station statistics. ASPIRES cannot be used to model a generic traffic sys-
tem but is well-suited for fleet systems.
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One challenge in simulating transportation systems is to
calibrate simulation models to reflect reality. The sto-
chastic nature of both microscopic-level drivers’ beha-
viors and macroscopic-level road link properties requires
the output statistics from a large amount of simulations
align with the observations from the field. The dynamics
of the simulations for such systems are usually driven by
individual vehicles which are modeled with different
parameters. The calibration of a large transportation sys-
tem includes origin-destination (OD) flows, car-following
model parameters, and lane-changing model parameters
(1). To evaluate energy consumption in such simulations,
the energy consumption model also needs to be cali-
brated. The calibration process is usually computation-
ally costly and the calibrated simulation still may not
reflect the reality.

This work focused on simulating airport shuttle
bus operations, and was motivated by work from an
ongoing collaboration with Dallas/Fort Worth (DFW)
International Airport in the U.S. The shuttle operations
at DFW International Airport were used as a case study
for this work. In a previous work, the authors developed
a mixed integer optimization model to optimize the
routes and bus schedules for the DFW airport shuttle
buses (2). The routes and bus schedule were optimized
with different constraint parameters for decision-makers
to choose from. These different constraint parameters
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indicated different levels of expectations for the shuttle
bus passenger experience. This optimization work
resulted in 756 optimized day-long bus route schedules.
To gain insight into how these optimized routes would
perform in a stochastic operating environment, it was
determined they should be tested using a detailed simula-
tion. In addition, DFW airport was evaluating the possi-
bility of adding electric buses to their shuttle fleet which
raised many operational and planning questions simula-
tion could shed light on. Thus, a need was identified to
have a simulation model with the following features:

e can evaluate the optimized shuttle bus routes and
schedules

e can capture the complex shuttle dispatching oper-
ations in DFW airport
can support electric shuttle planning
can easily be calibrated
can reflect the stochasticity of the traffic systems

Transportation systems have been widely simulated
with discrete time simulations. The systems are usually
simulated with certain time steps (usually 1s or 0.15s).
Before each step, the status of each element in the simu-
lation is updated by various models (e.g., car-following
models, lane-changing models, traffic signal control
models). Most available traffic simulation software
packages can be customized to simulate airport shuttle
operations and to evaluate electric shuttle impacts
through application programming interfaces (APIs).
However, the calibration of drivers’ behaviors and vehi-
cles’ energy consumption takes significant research and
computational efforts. Also, the detailed interaction
models among all the elements in the transportation sys-
tems slow down the simulation computational time. In
another work under the same project, simulating 1day
of DFW airport land-side traffic in the SUMO simula-
tion package took up to 6h using high performance
computing (HPC) systems (3, 4). When traffic became
more congested, the simulations with SUMO took a lon-
ger time.

In recent years, discrete-event simulation has started
to be implemented for simulating traffic systems. Two
simulation models—POLARIS and Mobiliti—are
actively being developed through U.S. Department of
Energy (DOE)-funded projects (5, 6). These two models
implement parallel discrete-event simulations to simulate
city-scale vehicle movements in a reasonable amount of
time (7). While they can quickly simulate a city-scale
traffic system, significant calibration efforts are still
required before using these simulation packages, which
can be a time-intensive process.

An early effort in bringing discrete-event simulation
to transportation systems modeling is Burghout et al.’s

discrete-event mesoscopic traffic simulation model (§).
This model combined queue-server and speed-density
modeling for the mesoscopic traffic modeling and has
the ability to integrate with microscopic traffic models to
address intelligent transportation systems (ITS) applica-
tions. Soh et al. developed a discrete-event traffic simula-
tion model for multilane-multiple intersections based on
queuing theory (9). Zhang et al. proposed a discrete-
event and hybrid simulation framework based on
SimEvents which facilitates testing for safety and perfor-
mance evaluation of an ITS (/0). Notably it has been
used to build a traffic simulation model of a connected
and automated vehicles test facility. Aimsun also intro-
duced discrete-event simulations to their capabilities
(11).

All the aforementioned discrete-event traffic simula-
tion models were designed to be general purpose. None
of them can be used to address the requirements for
evaluation of shuttle bus operations at DFW airport
without a significant amount of customization work.
Additionally, the calibration effort is still significant.
Therefore, an Airport Shuttle Planning and Improved
Routing Event-driven Simulation (ASPIRES) package
was developed to simulate the shuttle operations at
DFW airport. It can simulate passenger arrivals, passen-
ger pick-up/drop-off, on-demand operations, dispatching
operations, and battery charging and discharging beha-
viors for electric shuttle buses. Compared with existing
traffic simulation packages, ASPIRES is driven by
empirical distributions of field data, therefore little cali-
bration effort is needed. ASPIRES is cross-platform and
can be run on local machines (e.g., personal laptops) or
in parallel on HPC. The discrete-event nature of
ASPIRES provides very high-performance simulation.
Simulating one-day’s operation took less than 2s.
Beyond its original purposes, ASPIRES can also be used
to simulate any type of fleet operation with fixed stop
locations and people/cargo to be carried between the
stops. This work brings a new way to model fleet systems
that is data-driven and high-performance.

Airport Shuttle Operation at DFW Airport

The airport shuttle services at DFW airport connect air-
port terminals, employee parking lots, remote parking
lots, and the rental car center. This study focused on the
shuttle service connecting the airport terminals and the
rental car center. The airport has around 50 shuttle buses
that can be used to move passengers to and from the
rental car center. The shuttle buses serving the rental car
center were mainly 43-seat buses at the time of the study.
The shuttle buses loop between the rental car center and
the airport terminals. A shuttle bus could go to multiple
terminals within one trip. There are multiple stops within
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a terminal for different segments of the curbside. When a
shuttle bus can not pick up all the passengers at a stop,
the driver will inform the dispatcher to send a bus (called
a hotshot bus) to pick up the rest of the passengers at the
bus stop.

The airport is interested in acquiring electrified shuttle
buses and wanted to evaluate the impact of shuttle elec-
trification. This includes understanding the required bat-
tery size/range of each bus, the number of chargers
required to keep the fleet sufficiently charged, and the
speed at which those chargers must recharge buses.
Additionally, in the case that the bus fleet is only part-
electric, trade-offs between fleet emission reductions
from electrification and battery/charging infrastructure
costs emerge.

Airport Shuttle Operation Discrete-Event
Modeling

In light of recent success in the literature and perfor-
mance considerations, it was chosen to model and simu-
late the airport shuttle operations with discrete-event
simulation. Instead of moving the simulation by a time
step, discrete-event simulation moves the simulation by
events. A discrete-event simulation can be modeled by a
time clock ¢ € T, system states S(¢), and a dynamic event
list {e;,ez,...€;,€; 1 1, ..., e, }. T is the simulated time dura-
tion. Each event e; is associated with an event time #; and
an event action a;, that is, ¢; = [f;, a;]. An event ¢; can be
triggered (created) by an earlier event ¢; at At; ago, that
is, t; = t; + At;. After an event ¢; is processed, the simula-
tor will find the very next event, eye., in the event list.
The system’s state does not change between two events,
that is, S(t) = S(t,), for ¢ € [t;, t;w«). The quantity #ves can
be found using Equation 1:

tver = min{t|t =t,t € T} (1)

To maintain the event list effectively, a discrete-event
simulation usually removes the events from the list after
the events have been processed. For the same reason, the
event list will be sorted by the event time when a new
event is added. This way, the first event in the event list
will always be the next event to simulate.

Figure 1 illustrates a single-process discrete-event
simulation of a shuttle bus movements. Event e; hap-
pened at time ¢ with the action of the bus finishing load-
ing passengers at the rental car center. The next event,
e; +1, was created at time ;- = t; + Af; to arrive at a
terminal bus stop. The state S(¢#;) could be the bus’s loca-
tion is at the rental car center with x(#;) number of pas-
sengers on the bus. Before ¢, S(¢; —€), with & being a
small number, could be the bus’s location is at the rental
car center with x(¢#; —€) number of passengers on the
bus. Event ¢; changed the number of passengers on the

Event i+1:
Arrive at a
terminal bus

Event i:
Finish loading
passenger at the

rental car center stop

Time

Figure I. lllustration of one discrete-event simulation.

bus. S(z; + 1) could be the bus’s location is at the terminal
bus stop still with x number of passengers on the bus.
The event e; + | was created when event e; was processed.
It is known that, after finishing loading the passengers at
the rental car center, the next event is for the shuttle bus
to arrive at a terminal bus stop, since it is part of the
shuttle bus’s route. Parameter At; can be a constant num-
ber, for example, expected travel time from the rental car
center to the terminal bus stop, that was set. To address
the stochasticity of the simulation, A¢; is usually drawn
as a random number from a known distribution.

Figure 2 illustrates the overall ASPIRES model logic.
Passengers arrives at different bus stops with their desti-
nations in mind. The shuttle buses carry passengers
between the airport terminals and the rental car center
following the routes specified by the dispatching center.

The shuttle bus fleet includes electrified buses (noted
as EV bus in the figure) and diesel engine buses (noted as
Bus in the figure) with two different sizes: 43-seat buses
and 14-seat buses. An electrified bus will go to the charg-
ing station to charge when the battery level is low. Under
opportunity charging scenarios, the electrified shuttle
buses will charge the batteries at each bus stop for the
duration of the stopped time.

In most scenarios, on-demand operations were
inspected. The on-demand operation comes in two
forms: on-demand buses and hotshot buses. The on-
demand buses are a fleet of buses serving during night-
time when the passenger demand is low and no regular
bus route is preset. There could be different on-demand
policies to send on-demand buses based on the passenger
arrivals. The hotshot buses are regular buses following
their routes during regular times. They are called hotshot
buses when they are sent by the dispatching center to a
specific terminal to pick up excess passengers who were
not picked up by a previous shuttle bus. This could hap-
pen when a shuttle bus is full and there are still passen-
gers at the bus stop. The shuttle buses only get instructed
by the dispatching center at the rental car center.
Therefore, the hotshot buses only start from the rental
car center to pick up passengers at the airport. The hot-
shot bus is a standard operation at DFW airport, while
the on-demand bus is an exploration from the research
team.
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Figure 2. Airport Shuttle Planning and Improved Routing Event-
Driven Simulation (ASPIRES) model.
Note: EV = electrified bus.

The ASPIRES package is developed with SimPy as
the discrete-event simulation engine (/2).

Passengers and Bus Stops Model

Passengers arrive at the bus stops and are carried by the
shuttle buses to their destination. The passenger arrivals
were modeled as Poisson processes. Aggregation was
done by day of week and hour of day. The passenger
arrivals for each stop, s, is an independent Poisson pro-
cess with arrival rate of N, (¢). A, (¢) is approximated by
the average number of boarding passengers at stop s,, in
the hour of ¢. In the simulation, it was assumed that a
non-existing passenger arrived at the beginning of the
simulation as an initial event. The arrival time of the
{j + 11" passenger at stop s, #° can be calculated by
Equation 2:

tjpjml = tj’“ + Atj”s”’ A (2)
The passenger arrival headway, A#”*, at stop s,, follows
exponential distribution and can be calculated by
Equation 3:

—3600 X Inu
Apn = 23000
q )

The passengers were taken by the shuttle buses when
the shuttle buses arrived. The passengers boarded the
buses on a first-come-first-served basis. The time when
each passenger j arrived, tf " at a certain bus stop, s,
and the time when the passenger boarded the shuttle
bus, £, were recorded for evaluating the waiting time
statistics and queue length statistics at the bus stop. The
method to derive waiting time and queue length will be
presented in the Evaluation in Simulation section.

Also, a lock flag was set for each bus stop. When a
shuttle bus started loading passengers, the bus stop will
be locked to prevent another shuttle bus from loading
passengers at the same time. This was designed because
the system state for the bus stop does not change until
the loading event is finished. Two shuttle buses loading
passengers will cause one passenger boarding two differ-
ent buses.

A bus stop tracks the current number of passengers,
NP (1), waiting at the bus stop s,. This information can
be used to trigger hotshot buses or on-demand buses.
The true headway during the simulation was usually dif-
ferent from the headway that was set for the simulation
because of the bus bunching effect caused by random-
ness. The bus arrival records at the bus stops were
tracked to evaluate the true headway.

An airport terminal has two or three bus stops at dif-
ferent locations at the terminal. Five different bus stops
were set at the rental car center—each corresponded to
one terminal at the airport. In the simulations, a passen-
ger arrived at a bus stop at an airport terminal who had
the destination of the rental car center, and a passenger
arrived at a bus stop at the rental car center who had the
destination of a certain bus stop within the correspond-
ing airport terminal.

,u~U(0,1) VSmj  (3)

Basic Shuttle Model

The basic shuttle model captures the existing diesel
engine shuttle bus at DFW airport and also serves as the
base for electric shuttle buses and on-demand shuttle.
The basic shuttle model has hotshot operation when the
hotshot operation is enabled. Each basic shuttle bus is
defined by certain parameters (e.g., vehicle ID [vid],
capacity [C,;z]). The status of a basic shuttle bus S,;(¢)
includes current route S),(¢), accumulative boarding
passengers number S%,(#), accumulative alighting passen-
gers number S%,(f), number of passengers on board
So.,(f), distance traveled S¢,(7), and energy consumed
vid(0)-

All buses are created in the beginning of a simulation

based on a route schedule table. The route schedule table

includes—at any hour of the day, for each day of the
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week—what are the bus routes and how many vehicles
will be serving each of the routes. The simulation exam-
ines the route schedule table to find the maximum num-
ber of vehicles needed at any time of the simulated
period. The simulation usually starts from midnight
when only a few shuttle buses are used. The shuttle buses
that are not serving passengers are set to be on a virtual
garage parking route.

The current route is assigned by the dispatching center
before the start of a trip. A trip is defined to start and
end at the rental car center. A trip could be a service trip
from the rental car center to certain airport terminals
and then back to the rental car center, a charging trip
from the rental car center to the charging station and
then back to the rental car center, or a parking trip from
the rental car center to the parking garage when the bus
is not used and then back to the rental car center. The
service trip could follow a predefined route or follow an
ad hoc route generated by the dispatching center as an
on-demand trip or hotshot trip.

Accumulative boarding passengers number, accumu-
lative alighting passengers number, number of passen-
gers on board, distance traveled, and energy consumed
are updated by Equation 4:

S(17) = St — €) + AS(#;) (4)

The state accumulative alighting passengers number is
updated when the bus unloads passengers at time #;. All
the passengers will leave the bus when the bus arrives at
the rental car center. Only the passengers with the desti-
nation of the current stop will alight the bus if the bus
stop is at an airport terminal.

The state accumulative boarding passengers number is
updated when the bus loads passengers at time #. AS?,(f)
can be calculated with Equation 5:

i b (4 _
AS',(1) = {mm{NQ(z), G =St 9). g

In the rental car center, the bus records the boarding pas-
senger number at each stop to inform the alighting pas-
senger number when the bus arrives the terminals.

The change in number of passengers on board
AS?. () is calculated by subtracting newly boarded pas-
sengers number and newly alighted passengers number,
that is, AS%,(t;) = ASP,(t;) — AS%,(4;). S%,(¢) is updated
after both alighting and boarding. When alighting,
ASfid(t) = 0; when boarding, AS¢,(#) = 0. Alighting
always happens before boarding to make room for the
boarding passengers. In the early stage, the alighting/
boarding time was calculated based on the number of
alighting/boarding passengers and average alighting/
boarding times. When there was access to more granular
data, it was found that the dwell time at each stop was

not correlated with the alighting/boarding passenger
number. One possible explanation is that the bus drivers
have various reasons to wait when they stop. For exam-
ple, they might get out to stretch or may decide to always
wait a few minutes to make sure no one else shows up
regardless of being instructed to do so or not. Therefore,
the dwell time was simply drawn from the empirical dis-
tribution from the field data.

Between stops in the service routes, the empirical dis-
tribution generated from combined field data and simu-
lated data was used to inform the simulations. The
distance between two stops does not change. The energy
consumed is highly correlated with the travel time in
each trip segment. During congested times, the travel
time between two stops is usually higher than other times
and the consumed energy is higher than other times.
When randomness is introduced in the simulation, the
empirical distributions from energy consumption and
travel time should be associated with each other.

The refueling process for the diesel engine was not
modeled, since the refueling process is much faster than
electric shuttle charging, and the service time is longer
between two refuels.

Electric Shuttle Model

The main difference between the electric shuttle model
and the basic shuttle model is that electric shuttle buses
have battery charging and discharging process. The
major operational difference between electric fleet and
diesel fleet is that the charging time for electric buses is
usually much longer than the refueling time of diesel
buses because of the limitation of charging and battery
technology. The long charging time of electric buses will
make it more challenge to provide reliable service with
limited fleet size. To ensure that the passenger waiting
time is not significantly increased when switching from
diesel buses to electric buses, shuttle operators need to
ensure enough buses, sufficient battery capacity, and
enough chargers in the charging station.

In the simulations, it was assumed that the charging
station is located within the rental car center. For other
applications, the charging station can be modeled to be
at any location. The impact of the charging station loca-
tion in ASPIRES is modeled as the required distance (a
constant number), travel time (from a distribution), and
energy consumption (from a distribution) from a stop or
the stops which are connected to the charging station in
the bus routes.

Electric shuttle has battery capacity B¢, and charging
rate B),, parameters to describe the battery characteris-
tics. An electric shuttle, vid, tracks its state of charge
(SoC), St,(#). In reality, B, is a function of S%,().
Studies showed that when SoC is within a certain range,
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[B,.s»B.ty] (e.g., [20%,80%]), the charging rate can be
viewed as constant (13, /4). In the simulated operations,
the batteries are operated within [B;,,, B,;,] so that B’,, is
constant during the battery charging time. In the simula-
tion, SoC is also updated by Equation 4. When energy
consumption historic data is available, ASfid(ti) can be
calculated by S¢,,(#;) by Equation 6:

=Sy ()
B, °
ASt (1) = vid
vid \'1 vid ¢ Bl
AGEX g

vid

e¢; 1s a discharging event

e¢; is a charging event

(6)

The charging time At;’d can be the dwell time for oppor-
tunity charging. If the shuttle uses the charging station,
At; can be calculated based on the SoC of the battery and
charging rate, that is:

— Biid X (thd — Sfid(tj))
Bl

Ay (7)

Electric shuttle buses serve passengers the same as die-
sel engine shuttle buses. After an electric shuttle bus has
dropped passengers at the rental car center, it will check
the battery SoC and the charging station status to decide
whether to go to the charging station or keep serving the
next trip. A logic for electric shuttle buses was designed
to reduce the chance of wasting time waiting in line at the
charging station.

Two thresholds were defined: B, and thmge,
Biarge < = Baarge- When S0 (6)>B, ... the shuttle bus

vid will keep serving passengers if needed. When
S0t € [Bhurges Boarge)» the shuttle bus vid will check
the charging station to see if there is a charger available.
If all the chargers in the charging station are occupied,
the shuttle bus will keep serving passengers; otherwise,
the shuttle bus will take a charger and start a charging
event e; for a duration A#; which can be calculated by
Equation 7. This operation will not happen if the two
thresholds are set to be the same, that is, B,,.e0 = B arge:
When SoC is lower than the lower threshold, that is,
Sfid(tj)<thwge, shuttle bus vid will go to the charging
station and wait in the queue to get charged. The time in
the queue is recorded separately from the charging time.
This is designed intentionally so that ASPIRES can be
used to also model the power grid impact during the elec-
tric vehicles’ charging processes.

When an electric shuttle goes to the charging station,
the route that the shuttle was serving needs another vehi-
cle to replace the electric shuttle. This is covered by the
bus dispatching function of the dispatching center.

When an electric shuttle is not needed (i.e., less buses
are needed in the service), before going to the garage, the
shuttle bus will take the opportunity to charge its battery

to B,

On-Demand Shuttle Model

The on-demand shuttle buses were modeled with the
intention to serve night-time passengers with smaller
shuttle buses (i.e., the 14-seat buses). The dispatching
center set the route for an on-demand shuttle bus if the
bus is available to answer the on-demand call (i.e., the
bus is not serving passengers). There could be many
implementations of the on-demand policy to decide how
to generate an on-demand route based on the number of
passengers waiting at each bus stop. A naive policy is to
check the bus stops periodically and send an on-demand
bus to visit all the bus stops with passengers waiting to
serve all the passengers. The special setting of an airport
shuttle bus makes it clear to see where the passenger’s
destination is, if it is known at which bus stop that pas-
senger is waiting. For example, a passenger waiting at
any bus stop in the terminal has the destination of the
rental car center.

Charging Station Model

One charging station for the DFW airport shuttle fleet
was defined in the simulation. The charging station is
modeled as an N-server queuing system with each char-
ger in the charging station as a server. The chargers’
usage history, N¢(¢), t € T, through the simulation is
recorded.

Data Collection

This study used data collected from the field to feed the
simulation. For the routes that did not exist or with miss-
ing data, data evaluated from a high-fidelity simulation
model of DFW airport was used (3).

Field Data

Passengers’ demand data, existing routes, travel time,
and energy consumption data were collected for each trip
segment.

The demand data gives time-dependent passenger OD
information. For the studied scenarios, the passengers
either leave from the rental car center to go to airport
terminals or leave from the terminals for the rental car
center, making OD information easy to calculate. The
number of passengers leaving a certain terminal to go to
the rental car center can be determined by the number of
passengers boarding the shuttle buses at the terminal.
The number of passengers moving from the rental car
center to a certain terminal can be reflected by the alight-
ing passenger from the shuttle buses’ number at that ter-
minal. During the study, the passenger demand was first
collected from the drivers’ notes. The shuttle bus drivers
manually wrote down the number of passengers loaded
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Figure 3. Passenger arrival rates at rental car center.

to the buses at each stop and aggregated every half an
hour. A total of 16 months of these records were col-
lected. In the later phase of the study, DFW airport
implemented a global positioning system (GPS)-enabled
automated passenger counter (APC) system that reports
the time, location, route, and boarding and alighting pas-
senger counts. Two months of data was collected from
the bus APC system. In the early stage of the ASPIRES
development, the manually collected data from drivers
was used. Once access to APC data was available, a
switch was made to APC data. For readers who want to
implement ASPIRES-like simulations for other sites, if
there is no APC system implemented, the drivers’ notes
can be used to provide passenger demand data to drive
the simulations. Figure 3 shows the passenger arrival
rates through different time of day and day of week at
the rental car center stop.

ISAAC Instruments DRU-900 controller area net-
work (CAN)-based data loggers with GPS were also
used. Data collected from CAN conforms to the Society
of Automotive Engineers (SAE) J1939/71 standard
which provides instantaneous vehicle speed, fuel rate,
and engine power that is recorded with GPS location at
1s intervals (1Hz rate). Approximately 1 month of bus
operation data were collected to capture representative
vehicle operations and ensure all the various currently
used routes were covered.

Vehicle location from the GPS was used to identify
and segment the data by route. Once segmented, energy
consumption and operational analysis metrics were cal-
culated from the data, including distance, average speed,
fuel consumption, engine output energy in kWh, and fuel
economy. Vehicle speed and distance were captured
using the GPS system, and fuel metrics were calculated
using the fuel rate metric. Finally, the engine power out-
put in kWh was calculated using the estimated engine

torque and engine speed data channels. The instanta-
neous engine power is then multiplied by the data cap-
ture rate of 1s and summed over the segmented data to
get a trip positive tractive energy requirement in kWh.
While this data was collected from conventional vehicles,
the tractive energy requirement in kWh can be approxi-
mated to the energy requirement of an electric bus oper-
ating over the same route. In actuality, the electric buses
will be able to recapture energy through regenerative
braking, meaning the total trip energy of an electric bus
will be slightly less than the positive tractive energy
requirement of a conventional vehicle and have an over-
all higher efficiency.

Simulated Data

The ASPIRES framework evaluated different routing
strategies, including the routes with non-existing trip seg-
ments. For example, the existing routes in the field do
not have shuttle buses moving from terminal C to termi-
nal E. Therefore, the data collected from the field cannot
be used alone to execute the simulations. Advantage was
taken of a calibrated high-fidelity simulation of the area
done by NREL researchers to augment the field data.
The high-fidelity simulation was modeled in the SUMO
simulation package (4). The travel time and energy con-
sumption data for each possible trip segment was
extracted to augment the field data.

It was found that the overall mean and standard
deviation for energy consumption are 2.29 kWh/mi and
1.04 kWh/mi, respectively.

Evaluation in Simulation

The purpose of developing ASPIRES was to evaluate dif-
ferent planning and routing scenarios. The focus was on
two types of evaluation: passenger service level and utility
usage.

Passenger Service Level

In this study, the passenger service level is indicated by
the queue length and waiting time. From the passenger
arrival and boarding time records, it is possible to gener-
ate a cumulative arrival function, 4, : T — N, and a
cumulative loading (departure) function, Dy, : T — N
for a bus stop s,,, as shown in Figure 4.

The queue length at bus stop s, at time ¢ is the vertical
distance between the two curves at time ¢, that is,
qs,(t) = A;,(t) — Dy, (¢). For instance, the queue length at
10:20 in Figure 4 was 181 — 181 = 0. The waiting time
for passenger j at stop s, is the horizontal distance
between the two curves defined by
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Figure 4. A cumulative arrival departure curve plot.

ws, (7) = min{ty} — max{t,} where tq={D;, (t;) =j}

and t, = {4,,(t,) =j}.

Utility Usage

The bus occupancy, total vehicle miles traveled, and total
energy used during the simulation are evaluated. The bus
occupancy comes from the number of passengers on
board record, S,,(¢). The vehicles miles traveled and
total energy used come from the corresponding states
records of the basic shuttle model.

For scenarios with electric shuttle buses in the fleet,
the number of chargers being used through the simula-
tion, N<(¢), t € T, is also evaluated. If max,ct N°(¢) is less
than the total number of chargers set in the charging sta-
tion, only max,ct N¢(f) chargers were needed in the simu-
lated setting.

Routing Strategies

The routing strategy came from a shuttle bus route opti-
mization work for DFW airport. The shuttle bus route
optimization used mix-integer optimization to generate
the optimal route combinations, number of buses on each
route, and the bus type for each given time window of
each day of the week. The optimization goal was to mini-
mize energy usage of the entire shuttle fleet during each
time window. More details of the model was reported in
Sigler et al. (2). There is a clear trade-off between passen-
gers’ service level provided by the shuttle and the energy
consumption from serving the passengers. To allow the
decision-makers to evaluate the optimal routes under dif-
ferent passenger service-level constraints, the routes and
frequencies were optimized under different parameter set-
tings (e.g., maximum headway, maximum in-vehicle
travel time, and predicted arrival rates).

Also, a baseline simulation was conducted to simulate
the current route schedule. The bus tracking system’s
report from DFW airport was processed, and the routes
and schedule were re-created for the baseline simulation.

Results

ASPIRES can be run with *UNIX-like commands which
enables single simulation run at a time on a local machine
or massive parallel simulation runs on an HPC cluster
through Slurm workload manager. Besides being able to
run thousands of simulation scenarios at the same time,
running on an HPC cluster also makes it possible to take
advantage of the parallel file system for faster reading
and writing. For users who do not have access to HPC,
running ASPIRES on a local machine is also fast enough
for what-if scenario evaluations. Thousands of simula-
tion evaluations with ASPIRES were run on NREL’s
HPC system, Eagle. On average, simulating 1day of
operation took around 1s of computational time. Some
simulated results are presented here. First, the results for
evaluating improved routes against a baseline simulation
are showcased. Later, the results for evaluating electric
shuttle operations are presented.

Routes Comparison

The existing routes configuration was simulated as the
baseline simulation. To measure the accuracy of the
ASPIRES simulation of bus fleet energy consumption,
the baseline simulation was compared against DFW fuel
and mileage logs from August, 2018, to August, 2019,
for the rental car shuttle fleet. The data from these logs
was used as the ground truth for estimating the average
daily energy consumption of a DFW rental car center
bus. ASPIRES was used to simulate the baseline sce-
nario, which used the same routes the buses used during
the time period the fuel and mileage logs were collected.
It was found that ASPIRES overestimated the energy
consumption of a DFW rental car center bus by less than
2% on average, when the data sources mentioned previ-
ously were used in the simulation. This result shows that
the ASPIRES model can very accurately simulate energy
consumption from a bus fleet provided there is sufficient
data to drive the simulation.

The existing operation, most of the time, has dedicated
routes between the rental car center and each of the term-
inals (as shown in Figure 5). The circled “R” represents
the rental car center and the other circled letters represent
different terminals. There are five existing routes, each
connecting the rental car center and one of the terminals.
The optimized operations could have one route visiting
multiple terminals before getting back to the terminal
(see Figure 6 for example).
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Figure 5. Existing routes.

The high computational performance of ASPIRES
makes it possible to evaluate many operation settings.
Figure 7 shows the trade-off between energy consump-
tion of the fleet operation and the fleet service level (rep-
resented by passenger waiting time). The x-axis is the
average system-wide passenger waiting time in minutes.
The y-axis is the total energy consumption of the fleet
operation in a typical week in gasoline gallon equivalent
(GGE). Each blue point represent a certain route setting
which has different bus routes and frequency across dif-
ferent time of day and different day of week. The route
settings were generated from a mixed integer optimiza-
tion model (see more details in Sigler et al.) under differ-
ent optimization parameters (2). Under one set of
optimization parameters, the optimization model gave
one route setting. The red line in the figure gives the par-
eto front of minimizing energy consumption and mean
passenger waiting time. It can be seen that, from setting
A to setting B in the figure, with less than 2 min increase
in mean passenger waiting time, over 25% savings in
energy consumption were achieved. Note that all the
points in the figure came from optimized settings. It is
intuitive that reducing energy consumption (saving
operational cost) and reducing passenger waiting time
(improving customer service) are two competing

Figure 6. One set of optimized routes for 4 to 8 a.m. time
window on a Monday.

18000

16000

14000

12000

10000

8000

6000

Energy consumption (GGE)

4000 A

5 10 15 20 25 30
Mean waiting time (min)

Figure 7. Trade-off between energy consumption and passenger
waiting time under different route settings.
Note: GGE = gasoline gallon equivalent.

objectives. Evaluating different (optimized) routes with
ASPIRES enables decision-makers to see the trade-off
between the two objectives quantitatively.
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Figure 8. The battery level profile for charging the electrified bus
(EV) shuttles when the state of charge (SoC) is lower than 20%.
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Figure 9. The battery level profile for charging the electrified
bus (EV) shuttles randomly when the state of charge (SoC) is
between 20% and 70%.

Electric Shuttle Operation

Two different electric shuttle charging strategies were
compared: 1) charge the battery only when SoC is lower
than 20%, and 2) charge the battery randomly when SoC
is between 20% and 70%. Figures 8 and 9 show the bat-
tery level profiles of the two charging strategies. In both
strategies, 10 electric shuttle buses were introduced to the
airport shuttle fleet. The horizontal axis is the time of
day in seconds during the simulation and the vertical axis
is the battery level in KWh. The battery level decreased
when the electric shuttle bus was serving trips. The differ-
ent discharging rates of different vehicles came from dif-
ferent routes and the randomness of the simulations. The
battery level increased when the electric shuttle bus was
charging its battery. In both scenarios, the shuttle buses
can only charge the batteries at the charging station.

It can be observed that vehicles that charge only at a
low SoC tend to charge together for a fairly long time
(as shown in Figure 8). This could cause queues building
up at the charging station if the charger is limited. If the
vehicles randomly choose to charge when SoC is between
20% and 70%, the charging requests were spread across
the time (as shown in Figure 9).

Conclusions and Future Opportunities

This paper presented the ASPIRES model. Unlike other
traffic discrete-event simulation models, ASPIRES can-
not model a generic traffic system. However, ASPIRES
is well-suited for a specific type of traffic system (i.e., fleet
operations). The constrained targeting modeled systems
enable ASPIRES to fully take advantage of discrete-
event simulation. ASPIRES skips the modeling of
detailed interaction among all vehicles on the road but
focuses on the operations of the fleet vehicles. The
impacts of the surrounding environment (including other
vehicles on the road, road infrastructure conditions, traf-
fic signal operations) are captured by historical data (and
simulated data) which drives the simulations. Therefore,
ASPIRES is computationally efficient. The data-driven
nature of ASPIRES saves calibration effort while provid-
ing highly realistic evaluation.

The electric shuttle model enabled planning for trans-
portation electrification. The on-demand shuttle model
could be used for studying on-demand policies in pre-
paration for connected and automated vehicles in the
fleet operations. The charging station in ASPIRES can
also serve as the interface to connect transportation
simulation and power systems simulation. The fast and
parallel simulation capability enables simulation-based
optimization (e.g., optimal charger number at the charg-
ing station) and optimal control (shuttle routes control
through reinforcement learning) for such systems.

ASPIRES can be generalized for other types of fleet
systems. It can be directly adopted for other types of
shuttle bus systems. Given passenger route choices, it is
possible to extend the simulated scenarios from airport
shuttle bus systems to urban transit bus systems. If pas-
sengers are changed to goods, ASPIRES can be used to
simulate freight fleet systems including delivery/pick-up
fleets. With different cargos, ASPIRES can be adapted
for simulating special fleets such as simulating mining
fleets. All the aforementioned fleets are, or will soon be,
undergoing an electrification process. The generalized
ASPIRES could be used to guide the electrification pro-
cess (e.g., evaluating the impacts of different numbers of
electrified fleet vehicles, different charging station config-
urations for the fleet systems, different vehicle and bat-
tery sizes, and different routing strategies under
electrified vehicles).
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