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Abstract—Increasingly, directional antennas are being used in
wireless networks. Such antennas can improve the quality of
individual links and decrease overall interference. However, the
interaction of environmental effects with signal directionality is
not well understood. We observe that state of the art simulators
make simplifying assumptions which are often unrealistic and
can give a misleading picture of application layer performance.
Because simulators are often used for prototyping and validating
new ideas, their realism and accuracy are of primary importance.
In this paper, we apply a new empirical simulation method for
directional antennas and study how well this models reality. We
show that not only is our model easy to implement, but is also
more accurate and thus better able to predict the performance
of propagation-sensitive applications.

I. INTRODUCTION

Using directional antennas is currently one of the main

techniques for improving link quality by increasing signal

strength in some directions while lowering interference in oth-

ers. Many directional networking protocols and applications,

however, are studied using wireless simulation models that

assume directional antennas experience environmental effects

in the same way that omnidirectional antennas do. This, in

turn, influences the expected behavior of the entire network

stack, potentially producing significant discrepancies between

simulations and empirical results.

This work makes the following contributions to improve the

fidelity of wireless network simulators:

• We show that current state of the art techniques do

not accurately capture the effects of the environment

on directional signal propagation and can thus produce

misleading results at higher layers of the network stack.

• We introduce an empirically derived model for signal

directionality, the Effective Directivity Antenna Model

(EDAM), that incorporates the environment’s effects on

directional antennas as a stochastic process.

• We verify EDAM’s accuracy as a simulation technique

by using it to model a data-striping application where

the physical boundaries of successful packet reception

are critical to overall success.

• We perform real-world indoor and outdoor experiments

and compare the results with those obtained by various

simulation techniques. We find that simulation based on

EDAM can improve fidelity by about 60%.

In the next section, we discuss related work. In section

III, we discuss our proposed simulation approach and the

model on which it is based. Section IV presents a security-

oriented smart-antenna application as a case study. We discuss

its implementation, simulation, and an analysis of the accuracy

of the various simulation approaches. Finally, in section V, we

conclude.

II. BACKGROUND AND RELATED WORK

In this section, we discuss the state of the art with respect to

the way network simulators model the physical layer. Figure

1 shows the simulation framework we conceptualize in this

work. We argue that while path loss models and fading models

capture some of the vagaries of the medium, they insufficiently

model the effects of the environment on signal directionality.

Additionally, prior work [1] has shown that the way the

physical layer is simulated can have substantial effects on

higher layer results. This motivates our work into building

an empirically derived model for the environmental effects on

antenna directionality, which we call a “directivity model” and

can be used in combination with fading and path loss models

to produce a more realistic simulation of the physical layer

effects in systems where antenna directionality plays a role.

Wireless network simulators use a path loss model to model

the degradation of a transmitted signal. In free space, energy

is propagated in all directions and the energy that actually

strikes the receiver is proportional to the square of the distance

between the transmitter and receiver – the signal is attenuated

∝ r2. This, however, ignores significant effects found in

terrestrial environments. Of particular concern are absorption

and refraction by obstacles and multipath interference, where

the radio frequency (RF) waves bounce off objects in the

environment and converge at the receiver after traversing

different distances (and thus potentially out of phase.)

The commonly-used “two-ray” path-loss model uses a re-

flection from the earth and the heights of the transmitter

and receiver to indicate the likely signal strength at a given

distance. Other models for such effects are based on fitting em-

pirical measurements rather than a-priori analysis. There are
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Fig. 1: Physical-layer simulation framework.

general-purpose models such as the Hata / COST231 model

and the Longley-Rice model [2], [3], and several specific

to the wavelength and operating characteristics of wireless

LAN cards [4]. Additionally, the propagation characteristics

of indoor environments are sufficiently different from outdoors

that there are a number of measurement studies and models

(see [5], [6] and [7] for excellent surveys).

The preceding models describe relatively large-scale phe-

nomena. In addition to whatever long-range attenuation there

may be, there is also small-scale fading, which is the result

of multipath interference and occurs at the scale of single

wavelengths. While this can theoretically be predicted an-

alytically, it would require that the environment be known

with a level of detail that is generally impractical [8], [9].

A common way of addressing such situations is through

statistical fading models. Rather than determine the signal

strength at any exact place or time, it is modeled as a random

variable with a known distribution. In general, the distributions

are fairly well-established, but the parameters are environment-

specific (see e.g. [10]). There are several common models,

among them Rayleigh fading, which assumes that there are

many comparable multipath signals, and Ricean fading, which

assumes a less “cluttered” environment in which line-of-site

paths are more important.

The concern addressed by this paper is that those models

do not consider an environmental component to directivity.

Our model for directional antennas adopts a similar approach

to the empirical path-loss and statistical fading models – we

use empirical measurements to identify the characteristics of

the random or stochastic process. Where we differ is that our

model is primarily concerned with effects on directionality.

The most commonly used simulators in networking research

(OPNET, QualNet, and NS-2) do not consider antenna direc-

tionality and radio propagation as interacting variables. Each

one supports several models of path loss, and possibly fading,

but they all follow the same general model with regard to

antenna gain: For any two stations i and j, the received

signal strength is computed according to the general form of

Fig. 2: Standard simulation modeling of directional antennas

assume all signals are emitted along a single path.

equation 1:

Received Power = Ptx ∗ Gtx ∗ L(i, j) ∗ Grx (1)

The received power Prx is the product of the transmitted

power Ptx, the transmitter’s gain Gtx, the path gain (loss)

L(i, j) between the two stations, and the receiver’s gain Grx.

The transmitter and receiver gains are essentially constants

in the case of omnidirectional (effectively isotropic in the

azimuth plane) antennas. For directional antennas, gain is

an antenna-specific function of the direction of interest. For

some given zenith φ, azimuth θ, and an antenna-specific

characterization function fa(), the power transmitted in that

direction is given by equation 2:

Gain in direction (φ, θ) = fa(φ, θ) (2)

Combined gain = fa(φ, θ) ∗ fb(φ
′, θ′) (3)

Correspondingly, the receiver gain is modeled by a (potentially

different) function fb() of the direction from which the signal

is received.

The above models describe the power emitted in or received

from a single direction (see figure 2). In reality, the trans-

mitter’s power is radiated in all directions, and the receiver



aggregates power (be it signal or noise) from all directions.

Besides being a source of interference for a dominant signal,

the energy traveling along secondary paths (due to side lobes)

also carries signal. Network simulators model the antenna

gain and path loss using the angles and straight-line distance

between the transmitter and receiver. However, if one of the

“secondary” reflected or refracted signal paths is aligned with

a high-gain direction of a transmitting or receiving antenna,

the received power from that path can be greater than that

of the “primary” path. Thus in environments with significant

multipath, the gain cannot be determined based solely on a

single direction. It makes intuitive sense that if a narrow beam

is directed into a scattering environment, the resulting signal

is probably not narrowly focussed.

Although the simulators we are considering assume that the

single direction of interest for each station is precisely toward

the other station, one can generalize equations 1 and 3 to

the case where there are multiple significant signal paths. In

this case, it is crucial to note that fa, fb, and Ll are complex,

so summation does not automatically imply an increase in

magnitude.

Prx =
∑

l∈paths

Ptx ∗ fa(φl, θl) ∗ Ll(i, j) ∗ fb(φ
′

l, θ
′

l) (4)

This assumes that there is some way to identify the available

paths that a signal may take. As with the Rayleigh and Ricean

fading models, it may be possible to build a parameterized

model of the cumulative effect of those paths for “cluttered”

and “uncluttered” environments.

III. A NEW SIMULATION APPROACH

In [11], we present a statistical model for the environmental

effects on antenna directionality. This statistical model can

be used as the basis for more realistic simulations. It has

long been recognized that radio propagation involves very

environment-specific effects. We identify three major ways of

addressing such effects in modeling and simulation: The first is

to simply ignore the variability and use a single representative

value in all cases. The second, which goes to the opposite

extreme, is to model specific environments in great detail. A

third approach is to randomly generate values according to a

representative process and perform repeated experiments.

Each approach has its benefits, but we are advocating

the repeated-sample approach. Precisely modeling a specific

environment probably has the greatest fidelity, but it provides

no information as to how well results achieved in a single envi-

ronment will generalize to others. Stochastic models have the

advantage of being able to produce arbitrarily many “similar”

instances, and parametric models make it possible to study the

impact of varying a given attribute of the environment. Such

approaches are frequently used to model channel conditions

[6], network topology [12], [13], and traffic load [14].

The key parameters to our method are the gain offset

correlation coefficient Kgain, the offset residual error Soff ,

and the per-packet signal strength residual error Sss. These

Environment Kgain Soff (dB) Sss (dB)

Open Outdoor 0.01 - 0.04 1.326 - 2.675 2.68 - 3.75

Urban Outdoor 0.15 - 0.19 2.244 - 3.023 2.46 - 2.75

LOS Indoor 0.25 - 0.38 2.837 - 5.242 2.9 - 5.28

NLOS Indoor 0.67 - 0.70 3.17 - 3.566 3.67 - 6.69

TABLE I: Summary of Data-Derived Simulation Parameters

Fig. 3: Example of data striping application

values were computed across many links for multiple environ-

ments. Table I summarizes these results. Importantly, similar

environments produced similar values, even with different an-

tennas. Because of this, it is possible for a researcher to select

representative values based on a qualitative understanding of

environment of interest.

EDAM’s principle of operation is that it generates random-

ized environmental effects based on the fitted distributions

of effects measured in real environments. This has two main

components: Algorithm (a) is a one-time initialization proce-

dure which computes offsets between the antenna gain in any

direction and the expected actual signal gain. Algorithm (b)

computes the expected end-to-end gain for a given packet, not

including fixed path loss. Thus, the simulated signal strength

would be determined by the transmit power, path loss, receiver

gain, fading model (if any), and the directional gain from

Algorithm (a). Note that a fading model that accounts for inter-

packet variation for stationary nodes may make the random

error ǫ in line 9 redundant. In our simulation configurations

below we refer to this error term as “implicit Gaussian” fading

and consider scenarios where it is replaced with Ricean and

Log-normal fading distributions.

IV. CASE STUDY: PHYSICAL SPACE SECURITY USING

SMART ANTENNAS

In this section, we use the work of Lakshmanan et al. as

a case study for the way antenna simulation strategy effects

application layer performance. In [15], the authors propose

“Data Striping” as a way of achieving physical space security

by steering antennas. Downstream packets are encrypted and

split into multiple parts so that all parts must be received in



Algorithm (a): Compute Directional Gain

1: Kgain ← gain offset correlation coefficient
2: Soff ← offset residual std. error
3: procedure DIRECT-GAIN

4: for Node n ∈ all nodes do
5: P ← partition of azimuth range [−π, π)
6: for pi ∈ P do
7: θi ← center angle of pi

8: X ← random value (µ = 0, σ2 = Soff )
9: on,pi

← Kgain ∗ fn(θi) + X

Algorithm (b): Compute Packet Gain

1: Spss ← residual error of packet signal strengths
2: function DIRECTIONAL-PACKET-GAIN(src, dst)
3: θsrc ← direction from src toward dst
4: θdst ← direction from dst toward src
5: psrc ← partition at src containing θsrc

6: pdst ← partition at dst containing θdst

7: Gsrc ← fsrc(θsrc)− odst,psrc

8: Gdst ← fdst(θdst)− osrc,pdst

9: ǫ← random value (µ = 0, σ2 = Spss)
10: return(Gsrc + Gdst + ǫ)

order to decode any portion of the packet. Several access

points, which are presumed to have smart antennas, then

transmit the packet-parts so that the only point at which

all the required information is available is at the intended

receiver. In this scenario (see figure 3), an eavesdropper who is

outside the coverage area of any of the access points will only

receive a subset of the packet parts and therefore be unable

to reconstruct the message. The measure of the effectiveness

is the size of the region in which an attacker can successfully

receive and reconstruct packets for any given probability of

success.

The authors verify their work using a custom simulator

that implements the International Telecommunication Union’s

(ITU) indoor attenuation model combined with log-normal

fading. This channel model fits well with our discussion

in Section II: while the path loss and fading models are

nontrivial, there is no interaction between the environment and

directionality. Because directionality is crucial to the proper

function of this application, it is important to understand how

the environment may affect performance.

A. Implementation

In order to understand the effects of the environment on

the application and get a baseline for further analysis, we

built a custom measurement testbed and ran tests in multiple

environments - both indoors and outdoors. Figure 3 shows the

conceptual layout of the experiments. Five nodes were used -

three APs, one client, and one eavesdropper. The eavesdropper

was positioned in many locations on a grid, at each of which

the access points sent a volley of broadcast packets (approxi-

mately 500) to the client while the eavesdropper attempted to

overhear them from its location. The indoor experiment was

carried out in a cluttered office with 83 unique measurement

points. The outdoor tests required 437 measurement points and

were carried out in a large field on the University of Colorado

campus.

All five nodes in the experiment were laptops running

Linux, with Atheros radios. The access points used 24 dBi

parabolic dish antennas, mounted on tripods and manually

aimed at the client according to signal strength values. The

client and eavesdropper used external omnidirectional anten-

nas with approximately 5 dBi gain. For the indoor experiments,

we reduced the power on the access points so that the

Path Loss Fading Directivity Model

Two-ray Log-normal EDAM

ITU 1238 Ricean “Pure”

Implicit Gaussian “Omni”

None

TABLE II: Physical-layer simulation options

received power at the (stationary) client was between -70

and -75 dBm. This was motivated by prior observations on

the large amount of uncorrelated noise produced by high-

power antennas in highly reflective indoor environments [16].

The outdoor experiments were carried out without any power

reduction.

B. Simulation

For simulation, we used the popular network simulator

QualNet 4.5 with physical layer simulations of varied com-

plexity. Each configuration has some combination of the

simulation layers listed in table II. We conducted a factorial

experimental design, trying each unique combination of path

loss model, directivity model, and fading model. While there

are a variety of established path loss and fading models, we

are not aware of any existing directivity models analogous to

what we propose. The alternatives considered are essentially

two null hypotheses: The first is that there is no significant

environmental effect, and the antenna gain pattern sufficiently

describes the signal directionality. This is the “pure” directiv-

ity model. The second is that environmental effects completely

dominate the antenna effects, and so the signal is effectively

isotropic. This is the “omni” directivity model. One might

expect difficulty rejecting the first null hypothesis in an open

outdoor environment, and the second in a highly-cluttered

indoor environment.

The simulated experiments were modeled directly after the

implementation discussed in section IV-A. Five nodes were

simulated, placed in the same relative positions as in the actual

experiments. The transmitters and intended receiver were

stationary, while the eavesdropper moved to the same points as

in the implementation. Both indoor and outdoor experiments

were run. The simulation processes were identical except

for the EDAM parameters: The indoor simulation used the



Directivity Model Vulnerability region (points)

Measured 38

Pure antenna 3 - 5

EDAM 54 - 79

Omni (no directionality) 83 (100%)

TABLE III: Size of 50% vulnerability region, indoor scenario.

“non-line-of-sight (NLOS) indoor” values, while the outdoor

simulation used the “urban outdoor” values. To deal with

power calibration, we calibrated each simulation configuration

manually so that the RSS values were comparable to those we

observed in the actual implementation for only the intended

receiver. We made ten unique runs per simulation, each with

a different random seed.

C. Analysis

In alignment with the literature [1], our results show that

system performance varies tremendously between simulation

models. Table III shows the number of locations at which an

eavesdropper can successfully decode ≥ 50% of all packets.

The actual vulnerability region is 10 times what a current

simulator would predict.

By plotting the probability of an eavesdropper receiving a

decodable packet at each position, we can observe that the

simulations with the EDAM model is closer to reality than

those without it. To quantify this effect, see figure 4 where

a cumulative density function (CDF) of the probability of

decoding a packet is plotted for each of the ten seeds against

the measured data from the implementation. Looking at figures

4a and 4b, we can see that EDAM performs well. On the other

hand, consider figures 4c and 4d, where state of the art models

(such as those used here) without a directivity model grossly

overestimate the effect of the antenna pattern on actual signal

strength, and thus the performance of this application.

Figure 4e and 4f give plots of outdoor results. Figure

4e is a pathological case, with the “pure” directivity model

and no fading model is used. In this case, the boundaries

are stark - nearly 60% of locations are protected, while the

remaining 40% are not. Although this performs poorly, it is

worth considering as not all simulation software uses a fading

model by default. For instance, the popular simulation package

NS-2 does not unless it is paired with an extension such as

[17]. Finally, figure 4f shows the best performing outdoor

simulation strategy. We can see that the benefits of EDAM

are more pronounced in indoor simulations where multipath

reflections are more prevalent.

To determine which simulation approach produces

application-layer results that are most consistent with the

measured data, we compare the distribution of simulated

application-layer performance with the distribution of actual

performance. We use a two sample Kolmogorov-Smirnov

(KS) test, which is effectively the maximal distance between

the CDFs of the two samples. We then perform an analysis

of variance (ANOVA) on the KS test results to determine

how much the various factors (directional model, path loss

model, and fading model) contribute to the overall accuracy.

Figure 5 provides a box and whiskers plot of the KS test-

statistic for each configuration. In this diagram lower values

indicate better performance, meaning that the distribution of

simulated performance closely follows the measured real-

world performance. Alternately, high values indicate that the

simulated performance deviates wildly from the measured

performance. We can see that the configurations utilizing

EDAM perform very well – producing application layer results

which are much closer to reality than any other configuration.

EDAM performs best in the indoor simulations, claiming the

top three positions with this metric - EDAM with ITU 1238

and Ricean fading performs best, with less than 0.3 difference

from the empirical data at maximum. The other two top

positions are taken by EDAM with other fading or path loss

models.

In the outdoor simulations, the conclusions are less strong

- EDAM with Two-ray and Lognormal fading performs best,

but is closely followed by EDAM with ITU 1238 and Ricean

fading and Two-ray with Ricean fading and the “pure” di-

rectivity model. While the strength of EDAM is greatest in

cluttered environments such as our indoor environment, it is

important to note that it still offers a significant improvement

in the outdoor environment.

Table IV shows the results of a factorial analysis of variance

(ANOVA), using the KS statistic and the various physical

layer simulation models as the factors. Note that the “omni”

directivity model is not included because it is so inaccurate that

its inclusion obscures the other effects. The test results show

that the choice of directivity model is by far the dominant

factor indoors, and a substantial factor outdoors.

In the indoor environment, the effect of directivity model is

4.9 times greater than any other factor. Outdoors, the path loss

model is the dominant factor, followed by the fading model

and then the directivity model. Both indoors and outdoors,

a Ricean fading model performed better than log-normal or

implicit Gaussian models. Somewhat predictably, the ITU

1238 indoor path loss model did better than the two-ray model

indoors, but the two-ray model did better outdoors.

V. CONCLUSION

In this paper we have presented EDAM, a novel empirical

method for improving the modeling of directional antennas

in simulators. EDAM is both easy to implement and gener-

alizable to a wide variety of directional antennas. We have

shown that state of the art techniques for modeling physical-

layer behavior for directional wireless networks can be mis-

leading. Moreover, the addition of a directivity model to the

conventional simulation stack provides a critical contribution

to the ability of a simulator to produce realistic application

layer results. Not only do simulations using EDAM produce

application layer results that are significantly more consistent

with reality than traditional models in the application we

study, but the choice of directivity model is the most influential

factor in realistic simulation of indoor environments. We have
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Fig. 4: CDF plots of application layer performance for simulation configurations: The black line is the observed data, and the

red (or grey) lines are the results of repeated simulation runs. The X axis is the proportion of decodable packets, and the Y

axis is the cumulative fraction.

Indoor Outdoor

Factor Df Mean Sq. F-Value Mean Sq. F-Value

Dir. Model 1 332.2 159911.55 27.14 34476

P.L. Model 1 68.0 32735.13 127.82 162367

Fad. Model 3 25.6 12315.35 73.46 93313

Dir. Model * P.L. Model 2 57.8 27841.84 31.49 39998

Dir. Model * Fad. Model 3 7.42 3572.82 27.70 35182

P.L. Model * Fad. Model 3 0.1 26.81 17.90 22733

Dir. Model * P.L. Model * Fad. Model 3 0.4 196.02 32.38 41135

Error 0.0021 0.001

TABLE IV: Summary of results for factorial ANOVA on KS-test statistic across all simulation configurations except for the

“omni” directivity model. P-values are omitted because all treatments are statistically significant at a level of p < 2.2 ∗ 10−16.

Error / residual Df are 9948 indoor, 52428 outdoor.
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Fig. 5: Test-statistic of a two sample Kolmogorov-Smirnov test, run for each simulation configuration against the measured

data (smaller values are better).

verified this with a factorial experimental design and a test-bed

implementation in representative indoor and outdoor locations.

EDAM is easily incorporated into wireless networking simu-

lations1, and is consistently more accurate than the state of the

art for systems involving directional antennas.
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