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Abstract—In the design of wireless networking protocols and
systems, simulation has become the primary form of initial
validation and performance evaluation. Hence, ensuring the
realism of simulators and simulation methods is fundamental for
simulated results to be interpretable. In this paper, we provide a

simulation framework for infrastructure wireless network traffic
that allows researchers to use publicly available captured traces
as a primary or background traffic source. We investigate the
question of trace classification as a necessary task for these traces
to be useful and apply our framework to a well-known power-
saving application, showing that the use of real traffic provides
substantially different results as compared to traffic generated
from an application-specific fitted model or contrived source.
Additionally, we show how trace classification provides unique
insights into application behavior in both typical and extreme
scenarios.

I. INTRODUCTION

The validation and performance analysis of networking sys-

tems, both wired and wireless, is typically done in simulation

or with testbeds. In both cases, the question of realism is

of primary importance for results to be interpretable. In [1],

Venkatesh et al. approach the question of how background

traffic generation affects simulation and testbed results. They

find that realistic traffic generation (particularly background

traffic) has not been a priority in many recent publications,

and attempt to quantify the harm this can cause by studying

three applications. Their results show that traffic realism can

have a substantial effect on simulation accuracy, but that

this effect is application specific. Indeed, some applications’

performance is minimally dependent on the underlying traffic

pattern. However for many applications the underlying traffic

does effect performance, sometimes substantially, and in these

cases care must be paid to its realism.

In this work, we take the view that the simplest solution

is likely to be correct in many cases, and that the best way

to simulate realistic traffic is to use real traffic to begin

with. The corpus of publicly available traces [2] has been

steadily growing over time, and has recently reached a point

of sufficient diversity to justify this approach. However, there

are still barriers for the researcher. Particularly, it is not clear

which traces to pick from the large selection. Even if the goal

is to generate traffic using a custom parameterized model, as

is a popular approach in the literature, the choice of which

traces to use in model generation is still complex.

To approach this problem, we suggest several novel clas-

sification metrics for traces and propose a repeated-measures

approach.We also take the stance that users are individuals and

that grouping them arbitrarily may result in traffic models that

have assimilated interesting attributes [3], [4]. Hence, these

classifiers are aimed at user traces and allow the researcher to

group these traces by attributes that are of particular interest

for a given application. We show how this framework can be

applied to a well-known powersaving application and attempt

to quantify the ill-effects of using simpler traffic generators in

its analysis.

Our work here is primarily concerned with modeling traffic

in a specific type of network: an 802.11x wireless network

operating in infrastructure mode. We focus on this type of net-

work for two reasons: (1) there is a relatively large collection

of publicly available traces for this type of network and (2)

due to their massive popularity, infrastructure-mode wireless

networks are of continued interest to the research community.

However, it should be noted that our framework and classifiers

could just as easily be applied to any other type of network

traffic generation task.1

In the next section we will give an overview of related

work. Section III will describe our proposed system for traffic

generation and section IV proposes our classification metrics.

In section V, we will apply the framework to the Bounded

Slowdown powersaving application, present results, and then

in VI we will conclude.

II. RELATED WORK

The networking research literature contains no shortage of

papers discussing the realism of simulation. In our community,

seminal papers in this area are arguably [5] (for networking

simulation in general) and [6] (for wireless networks in par-

ticular). Only recently, however, have researchers attempted to

quantify the effects of traffic realism on simulator and testbed

results [1].

Principally, we see two threads among work that consid-

ers traffic generation. The first thread is application-specific

1All of our source code and data can be found at http://systems.cs.colorado.
edu



Fig. 1: Our traffic generation framework.

traffic models and generation schemes. These are plentiful

and well implemented in modern network simulators. For

analyzing the effect of a particular type of application traffic

in some system, they are invaluable. Because it accounts for

a large percentage of Internet traffic, there are many models

of empirical Hyper-Text Transfer Protocol (HTTP) traffic

[7], [8], [9]. In addition to straight-forward HTTP models,

there are also web-workload oriented generators with specific

goals such as server performance testing [10]. Models for

other types of application-specific traffic include [11] which

generates streaming workloads, [12] which models variable

bit-rate video traffic, and [13] which models real-audio traffic.

The second thread is a more modern movement towards

application-agnostic traffic generators. These range from being

conservative to quite ambitious, but they almost universally

operate by (1) reading in captured traces (2) distilling an

empirical statistical model for some or all of the traffic and

(3) generating traffic based on these models. It is these models

that are most closely related to our work and therefore justify

a bit more discussion.

In [14], Sommers and Barford propose the HARPOON

traffic generation system. HARPOON uses 8 fitted variables

to generate Internet Protocol (IP) flow level traffic which is

statistically similar to the input traffic. Although it achieves the

goal of concisely modeling large-scale temporal behavior, it

fails to model small-scale behavior, which makes it of limited

use to some applications. Venkatesh et al. present SWING in

[15], which operates similarly to HARPOON, but addresses

the limitations. Indeed, SWING can model both large and

small-scale behavior and is even responsive to present network

conditions. SWING, however, does not provide the user any

guidance about which traces to use or how to use them,

which we solve through classification and repeated measures.

SWING is fundamentally different from our work as it is

trace-oriented, while our work is user-trace-oriented, which

we claim allows for more flexibility in the axis of user

individuality. Also, there currently does not exist a functional

implementation of SWING for researchers to make use of,

without substantial modification or reimplementation, and is

not being actively maintained by its author [16].

Finally, the work of Weigle et al. in [17] with the Tmix

generator most closely mirror our system. They use real traces

as input, which are reduced to the bare minimum features

(times and sizes) and then replayed for the experiment. While

this base functionality is similar to our approach, we make

two improvements: (1) we use a much larger corpus of data

from real-world deployments to validate our system and (2) by

introducing user-trace classification, we can guide the selection

of traces which both simplifies the job of the researcher and

allows for the investigation of performance in pathological

(e.g., highly loaded) configurations.

III. TRAFFIC GENERATION FRAMEWORK

The general outline of our framework is diagrammed in

figure 1. Starting with a pcap-format trace, such as is generated

by the popular tool tcpdump, we first identify and split on

good clients, omitting trace noise as described in [18]. Each

packet in each user trace is reduced to the bare minimum

information: (1) frame timestamp encoded as the relative

time since the previous frame and (2) the size in bytes. The

resulting trace is then divided into upstream and downstream

traces. We then create an index of all traces available, which

contains some descriptive statistics (such as the trace duration

in seconds), as well as classifiers discussed in the next section.

When the user is ready to generate a stochastic simulator

application, the “picker” is invoked with a configuration file

specifying needs and constraints. For instance, a configuration

file may ask for eight active nodes (one Access Point (AP) and

seven stations) with a minimum trace-length of one hour and

conforming to some classifier constraints. The picker reads in

the index, shuffles it, and then attempts to satisfy the needs,

rejecting traces that do not fulfill the constraints. In some

cases, the configuration is over-constrained, and it will fail.

The only solution in this case is to acquire more traces, or

to reduce the constraints. On successful completion, however,

a random application plan is produced with the requirements



requested. Because we have chosen to use the QualNet 4.5

network simulator [19], this is a QualNet application file, but

could easily be adapted to any simulator software.

The application plan specifies a unique trace to be replayed

for each participating node. The AP node is used as the head

node in the network and is the destination or source for all

traffic. In this way, a user-trace may make a HTTP request,

which will be sent from the client to the AP. When the HTTP

response would have returned, the AP will generate traffic

back to the client. Because the timings are taken verbatim

from real traces, this includes any delay which would have

been involved in this exchange.

Since each application plan is stochastically generated, a

repeated-measures approach follows easily. The researcher can

repeatedly run the picker to generate different plans and then

aggregate the results at the point where the sample size is large

enough relative to the variance on the variable of interest. All

in all, this is a very straight-forward system, which is our

principle goal in designing it.

However, simplicity does have its own costs - simulating

traffic by replaying traces has some limitations which are

worth mentioning:

• Replayed traces cannot respond to network conditions.

So, for instance, if your application concerns congestion

control, trace replay is probably not appropriate. This

concern is raised by [5], and to our knowledge, SWING

[15] is the only empirical traffic generator to address it.

• Replayed traces exactly model the network they were

captured on - warts and all. Hence, if the network was

highly congested, queues and other systems may skew

traffic patterns. It should be noted, however, that this level

of congestion is rare in practice [20] and can be easily

identified and excluded (if desired) using our classifiers.

• Timings are exactly as they were in the original trace.

This has the effect of double-counting the time required

to transmit the packets on the LAN itself. This occurs

because the time spent traversing the LAN is implicitly

included in the interarrival times of the user trace. Hence,

any additional delay inserted by the simulator will be

redundant. We assume this to be negligible for most

(comparatively high latency) exchanges. For instance, in

the powersaving application we study below, decisions

are made on the order of hundreds of milliseconds

compared to the tens of milliseconds lost due to double-

counting. If needed, a small patch to the simulator soft-

ware (QualNet in our case) could also solve this issue

by not introducing any local transfer delay, and instead

assuming this is accounted for in the trace.

If, for one of these reasons, trace-replay is inappropriate for

a given task, then the simulation component in figure 1 can

be easily replaced with a parameterized simulator, such as

SWING [15] while continuing to use the rest of the framework

to guide its models2.

2In future work, we intend to explore this sort of hybrid solution in greater
depth.

Direction µ σ Neg. Log-Likelihood

Downstream -4.5086 2.1368 -3.1589e+06

Upstream -4.2452 2.5450 -2.9732e+06

TABLE I: Lognormal Fit Parameters for Interarrival Times

IV. CLASSIFICATION SYSTEMS

In this section, we will describe the user-trace classifiers

available to the user. Because we have investigated the useful-

ness of these metrics with respect to a particular dataset, we

will begin by listing the sources of data we used.

A. Data

For our dataset, we use 294 unique publicly available

[2] user-traces, which were recorded using passive vicinity

sniffing techniques. The three trace sets used are:

• PDX/VWave2006: A collection of traces collected at

public hotspots around Portland, Oregon including a

cafeteria, library, two coffee shops, and a public square.

The initial characterization of these traces is in [20].

• UW/SigComm2004: A subset of the traces collected by

University of Washington researchers at SigComm 2004.

Some characterization of these traces is in [21].

• Microsoft/OSDI2006: A subset of traces collected by

Microsoft researchers at OSDI 2006. Specifically we used

the traces from sniffers S4 and S5 concerning two APs.

B. Lognormal Interarrival Fits

Our first classifier is based on the observation that the zero-

censored packet interarrival times for many of our traces,

and for all upstream and downstream data combined across

users, is well-fitted by a Lognormal distribution3. Figure 2

shows an empirical CDF for the interarrival times of all

traces as compared to a lognormal fit and table I gives the

fitted parameters. Aside from being an interesting result in its

own, this motivates the observation that we can describe the

packet arrival process for users in terms of their adherence or

deviation from this distribution. Hence, our first classifier is

a lognormal fit of the interarrival times in each user-trace.

The parameters of this fit can be compared to the global

expectations in table I and used to categorize users as being

abnormally idle, busy, or bursty.

C. Stochastic Similarity Clustering

Our second classifier is based on the stochastic similarity

metric introduced by Nechyba et al. in [22], and first applied

to trace classification in our work in [18]. This similarity

metric provides a convenient number between 0 and 1 which

describes the extent to which two observation sequences are

similar. Each user trace is converted to a 1-second bucketed

4-state activity trace of the type proposed in [18]. We then

perform a factorial similarity analysis of all the user-activity

3Unless specified otherwise, all distributional fitting was performed with
the Matlab statistics toolbox.
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Fig. 2: Lognormal Interarrival-time Fit CDFs

traces, finding the similarity for each unique pair of user-

activity traces. With our data, this results in 42,777 unique

combinations of the 294 users, once self-pairs are removed,

which takes a substantial amount of time to calculate. We

then use the complement of the resulting similarity values as

the distances between points in a clustering algorithm. This

is demonstrated in the following equation, where dij is the

distance between users i and j and Oi is the observation

sequence of user i.

dij = 1 − σ(Oi, Oj) =

√

PjiPij

PiiPjj

(1)

The similarity function σ operates on the probabilities, Pij ,

which are the length-scaled probabilities of the observations

Oi given a Hidden Markov Model for Oj learned using

Baum-Welch Expectation-Maximization. The details of this

are outside of the scope of the present work, but are explained

further in [22] and [18].

Because initial investigation shows that the similarity values

are mostly bimodal (i.e., many users are very similar and many

users are very different), we choose to cluster into three groups

- one for each extreme and one for the remaining moderates.

The trace index is then augmented with the cluster group for

each user and this can be used to select users who are similar

or different.

D. Packet Allan Deviation

Because traffic burstiness can have a large impact on appli-

cation performance [1], we decided to include a dedicated met-

ric for this aspect. Allan deviation was introduced in [23] and

was used to describe the burstiness of traffic in the RoofNet

network in [24]. It differs from normal standard deviation,

because it quantifies the variance between successive τ -period
samples in an observation sequence {x1, x2, ..., xn}:

στ =

√

∑n−1

i=1
(xi+1 − xi)2

2(n − 1)
(2)

We calculate the Allan variance of the packet process using

the Matlab function avar by Alaa Makdissi with the sampling

period τ = 1s. In other words, for each user trace, we

determine the number of packets sent (in the case of the

upstream trace) or received (in the case of the downstream

trace) in each 1-second interval, and use this as input to

equation 2. The resulting values are appended to the user-trace

index as our final classifier. Figure 3 shows the distribution of

this metric in the user-traces. We can see that packet Allan

deviation follows a heavy-tailed (Pareto-like) distribution in

the real traces with most users providing relatively calm traffic,

and that on average downstream traffic is more bursty than

upstream traffic with a mean of 1.16 versus 0.90 respectively.

However, despite being more calm on average, the upstream

traffic features more outliers with abnormally bursty traffic,

four of whom achieve a packet Allan deviation of more than

20.

V. THE CASE OF BOUNDED SLOWDOWN

In the stock 802.11 power-saving scheme (PSM-Static), the

AP is responsible for buffering packets for sleeping stations.

In each beacon (approximately every 100ms), the AP sends

out a traffic indication map (TIM) which lists which stations

have buffered traffic. The station is responsible for listening for

these TIMs and when it is ready to receive the buffered data

it prompts the AP to start transmission. The station may sleep

through one or more beacons depending on the listen interval

communicated during association. When the sleeping station

has traffic to transmit it can send it at any time. This scheme

is static because stations sleep a fixed amount regardless of

network conditions.
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Fig. 3: Distribution of Packet Allan Deviation for User-Traces

ID Type Description

bursty Trace Replay Users in the upper 10-percentile for Allan variance

calm Trace Replay Users in the lower 10-percentile for Allan variance

dis Trace Replay A uniform selection of the most dissimilar users (i.e., across similarity clusters)

norm Trace Replay Uniform random selection of user traces

cbr Contrived Constant bitrate randomly chosen between 1 and 40 packets/sec as used in [25]

http Singe App HTTP traffic [8] and a maximum think time of 1s as used in [26]

TABLE II: Traffic sources used in analysis of Bounded Slowdown

Bounded slowdown is an alternative power-saving scheme

proposed by Krashinsky and Balakrishnan in [26]. As com-

pared to the stock 802.11 power-saving scheme, which is

agnostic to user-behavior, Bounded Slowdown (BSD) is tuned

for HTTP-like request-response traffic and user think times.

At the core, BSD is not complex, it uses a sort of geometric

backoff, and makes a point to stay awake for a brief period

following any transmission. Specifically, immediately after a

transmission it stays awake for b/p seconds where b is the

beacon interval of the AP (usually in the area of 100ms) and

p is the BSD percent, which is chosen by the implementor.

After this brief awake period, BSD attempts to sleep for

tsleep = telapsed∗p seconds, where telapsed is the time elapsed

since the last packet transmission. If the device is still idle

after this period (i.e., it has awoken naturally), it recalculates

tsleep (i.e., the backoff) and goes to sleep again, such that

tsleep <= tmax with tmax = 0.9s. Although this is simple, the

authors show that it works much better than PSM-Static. They

perform this validation by using a single-application packet

generator built into NS-2 [27] and based on the work of Mah

in [8].

The question we want to ask in this section, is to what

extent may the performance results presented in [26] have

been biased by the fact that they used single-application traffic

generated by a fitted distribution, which serves to ask to what

extent does traffic realism effect application layer results in this

application. To this end, we implemented the BSD algorithm

in the QualNet simulator [19]. QualNet comes with an HTTP

traffic generator based on the same work in [8], making a

comparison straightforward.

We approached the validation with the attributes of our

framework in mind - particularly the use of classifiers to

vary user traffic models and repeated measures. We performed

a factorial experimental design, trying each of three power-

saving schemes: None, PSM-Static, and BSD with various

workloads which are summarized in table II. Each simulation

run is one hour long, and contains 8 nodes total - one AP and

seven clients, uniform randomly placed in a 400x400m square

area. We ran each combination with 10 different randomly

generated application workloads and each of these with 10

different seeds, resulting in 100 runs with each combination

of power-saving scheme and traffic generator. The BSD pa-

rameter p was set to 50% in all runs as it appeared to be the

winning value in the original analysis of the tradeoff between

delay and power saving.

The results of these simulations are in figures 4 and 5. We

are looking at two application-specific metrics of performance

here. The first, in figure 4, is the cumulative distribution

function (CDF) of the percentage of time clients slept in

all runs for a given configuration. The top row shows the
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performance of PSM-Static and the bottom row shows the

performance of BSD. Good performance in this metric is

characterized by a CDF with a large proportion of users

on the right side of the x-axis (e.g., BSD with dissimilar

traffic). Alternately, poor performing scenarios will have a

greater proportion of users on the left side, indicating that they

were able to sleep very little (e.g., BSD with bursty traffic).

Although there are similarities, it is clear that the HTTP and

CBR traffic generates results that differ substantially from all

of the results based on real traces. Also, by using the classifiers

we are able to see that most users are bimodally distributed

between those who sleep very little of the time and those

who sleep much of the time. This is especially visible in the

pathological case of the bursty users, most of whom succeed

in sleeping very little - a use scenario which is not explored

in the original work at all due to the limitation of the traffic

source.

Figure 5 plots another aspect of the application performance

- power loss due to idling, which is a sort of inverse of the

metric plotted in figure 4. In this figure, which is a box and

whiskers plot, An ideal powersaving scheme would reduce

the power spent idling to zero because it will be sleeping the

entire time it is idle. This figure plots the extent to which

each scenario failed to do this. We can see here that the

replay based traffic tells a different story than the CBR and

HTTP traffic. In terms of this metric, the real user traces

actually spend less power idling on average, but also have

results across the spectrum. Looking at this metric, the case

for Bounded Slowdown over PSM-Static is not so clear. For

instance, PSM-Static outperforms BSD almost universally in

the case of primarily bursty users.

Finally, to understand why the application-specific traffic

produces these substantially different results, we can apply

our classification metrics to its traffic, and study how this

differs from values derived from real traces. Firstly, we find

that the zero-censored interarrival times of the HTTP traffic

are not lognormal. Instead, they follow a Generalized Pareto

distribution with the parameters summarized in table III. Next,

we calculate the mean Allan variance for both the real traces

chosen by our picker, and those generated by the HTTP traffic

generator. The difference is quite large. For downstream traffic,

the real traces show a mean Allan variation of 1.16 versus

5.62 for the HTTP traffic. For upstream traffic, the real traces

have a mean Allan variation of 0.90 versus 3.32 for the HTTP



Direction k σ θ Log-Likelihood k Std. Err. σ Std. Err.

Downstream 0.6512 0.0045 0 10142.2 0.0091 0.0001

Upstream 2.8521 0.0087 0 54034.0 0.0329 0.0018

TABLE III: Generalized Pareto Fit Parameters for Interarrival Times from Model-Generated HTTP Traffic

traffic. Lastly, we apply the factorial similarity classifier to the

model-generated HTTP traffic traces. The results show that all

the traces are extremely similar with a minimum similarity of

0.99 for both upstream and downstream traffic. In summary,

the HTTP traffic generator is creating user traces that are

extremely similar, unrealistically bursty, and have abnormal

interarrival processes. It appears that the application specific

traffic fails to model user individuality and is not showing the

whole picture, which serves to explain the application-layer

results it is responsible for.

VI. CONCLUSIONS

In this paper, we have presented a novel framework for

traffic generation in networking simulators and testbeds. In

order to narrow our range of study, we have looked at a

specific type of wireless network for which there is great

interest in the community. Compared to competing systems

for traffic generation, our system comports to Occam’s Razor,

being as simple as possible both in implementation and in its

use. We have suggested three classification metrics for user-

traces and shown how they can be used to easily generate

traffic for both representative and pathological scenarios of

particular interest. While trace replay may not be appropriate

for every application, we believe that it can be faithfully used

to generate realistic background and foreground traffic in a

great number of situations. In cases where it is inappropriate,

the modular design of our framework allows more complex

simulation methods to be used as well. Ultimately, our hope is

that the availability of a simple and straight-forward method

for traffic simulation will encourage researchers and system

designers to validate their proposals with realistic traffic in

addition to other application-specific traffic sources.
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